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Locating real-time water level sensors in coastal
communities to assess flood risk by optimizing
across multiple objectives
Iris Tien 1✉, Jorge-Mario Lozano1 & Akhil Chavan2

Coastal communities around the world are experiencing increased flooding. Water level

sensors provide real-time information on water levels and detections of flood risk. Previous

sensor installations, however, have relied on qualitative judgments or limited quantitative

factors to decide on sensor locations. Here, we provide a method to optimally place real-time

water level sensors across a community. We utilize a multi-objective optimization approach,

including traditional measures of sensor network performance such as coverage and

uncertainty, and new flood-specific parameters such as hazard estimations (flood likelihood,

critical infrastructure exposure), serviceability (sensor accessibility), and social vulnerability

(socio-economic index, vulnerable residential communities index). We propose a workflow

combining quantitative analyses with local expertise and experience. We show the method is

able to reduce the set of possible new sensor locations to just 1.3% of the full solution set,

supporting effective and feasible community decision-making. The method also supports

sequential expansion of a sensor network, creating a network that provides detailed and

accurate real-time water level information at the hyperlocal level for flood risk assessment

and mitigation in coastal communities.
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C limate change is leading to rising sea levels and increasing
frequency and severity of storm events. Combined with
varying environmental and social factors, this is leading to

increasing flood risk for coastal communities around the
world1–4. At the same time, real-time sensor technologies are
both improving in capability and decreasing in cost to install and
maintain5,6. The recent growth of water level sensors, in parti-
cular, provides communities with real-time information on water
levels across the waterways intersecting a coastal community and
detections of flood risk7–11. Compared to existing water level
monitors, e.g., a single tide gage offshore, creating a network of
water level sensors distributed across an area provides much more
detailed and accurate information about water levels in a coastal
community than was previously possible to obtain12.

This study looks at placing water level sensors in a coastal
community to provide hyperlocal and real-time information for
both flood risk mitigation (providing information on how water
levels change over different areas of a coastal community over
time) and emergency flood response (indicating the real-time
impacts of a given flood event in a community). To maximize the
benefit of such a water level sensor network requires that sensors
be located strategically across a community. While it is desired to
monitor and provide information about as much of an area as
possible, in reality, resources are limited, and a limited number of
sensors can be installed to provide flood risk assessment in the
coastal community. This study provides a method to optimally
locate real-time water level sensors across a community con-
sidering multiple objectives—including objectives not tradition-
ally included in such decision-making processes—to assess
flood risk.

Traditional quantitative sensor placement methods consider
two main objectives in placing and expanding a network of
sensors: increasing coverage of the network, i.e., increasing the
area that is covered and monitored by the sensors; and decreasing
uncertainty in the network assessment, i.e., decreasing the
uncertainty in the information about the whole area based on the
limited information from the sensors13,14. Though there have
been some optimization methodologies that combine network
utility parameters15, there is no study that combines flood risk,
social vulnerability, and infrastructure exposure in the assessment
of sensor networks. For water sensor networks, previous meth-
odologies focus on a single parameter, which is to minimize the
uncertainty in regions with no sensors16. This technique, how-
ever, assumes that all regions are treated equally and there is no
inclusion of social vulnerability. In contrast, many coastal regions
are diverse, with diverse communities composed of varying
populations, housing characteristics, critical infrastructure dis-
tributions, and varying levels of flood risk. Alternative qualitative
sensor placement approaches are based on the experience and
expertise of members of the local community, including planning
personnel and emergency managers, who have had experience
with multiple flood events over many years. Both quantitative and
qualitative approaches present key limitations. Existing quanti-
tative approaches fail to account for additional measures relevant
to flood risk, particularly critical infrastructure exposure17,18 and
social vulnerability measures that are critical to protecting vul-
nerable coastal populations and increasing resilience to the
impacts of climate change19–22. Existing qualitative approaches
fail to provide a quantitative basis or rationale for sensor
installations23. Installation decisions may be subject to historical
biases and overlook certain areas of a community that are critical
areas that would benefit from real-time flood monitoring.

To address this gap, we propose a method for optimizing the
placement of real-time water level sensors across a coastal com-
munity that considers multiple objectives, including sensor-
related (sensor coverage and network uncertainty), flood-specific

(flood hazard and proximity to critical facilities), and social
(socioeconomic and community vulnerability) parameters. The
sensors are treated as a network, which together provide real-time
information about water levels across a community. In the
method, we include traditional measures of sensor network per-
formance such as coverage and uncertainty, as well as new coastal
flood-specific parameters such as hazard estimations (flood like-
lihood, critical infrastructure exposure), serviceability (sensor
accessibility), and social vulnerability (socio-economic index,
vulnerable housing, and residential communities index). In
addition, we propose a workflow for decision-making in sensor
placement that maintains local expertise and experienced intui-
tion as key components of the process. This study is the first of its
kind to systematically consider multiple objectives in the instal-
lation and expansion of a water level sensor network for flood risk
assessment in coastal communities.

The method utilizes a multi-objective optimization approach
combined with geographic information system visualization to
facilitate both quantitative analyses of sensor placements con-
sidering multiple factors and communication with community
decision-makers. We illustrate the approach with a network of
water level sensors that has been installed and is currently in
operation along the coast of the state of Georgia, USA. The
project represents a partnership between academic researchers
and Chatham County, GA, officials to utilize new cutting-edge
sensor technologies to assess and mitigate flood risk for coastal
populations across the county.

What follows is first the description of the range of sensor
network parameters included in the methodology. Applying the
proposed approach to the Chatham County, GA, area and net-
work of sensors, we then describe the full solution space of
possible sensor locations and how to obtain the solution locations
for new sensor placements. Results show that the method pro-
vides effective decision support by narrowing the number of
possible sensor installation locations across a large area to a much
smaller feasible set of solutions based on the range of parameters
of interest. Given the long-term monitoring goals of these sensor
network projects, we then demonstrate how the method supports
the sequential expansion of the network as resources become
available for additional sensor installations. Comparing results
from our proposed method with those from traditional approa-
ches shows the importance of considering multiple objectives in
the sensor placement decisions to assess flood risk in a commu-
nity. We find that it is critical to include a full suite of sensor-
related, flood-specific, and social objectives in the analysis if we
are to leverage new sensor technologies to provide comprehensive
and accurate assessments of flood risk across coastal commu-
nities. The results provide a roadmap and methodology for other
coastal communities to utilize and implement as they install
sensors that provide real-time water level information for flood
risk mitigation and flood impact assessment in their
communities.

Results
Range of sensor network parameters. To find strategic and
optimal new sensor installation locations, we include five main
network parameters covering sensor-related, flood-specific, and
social measures: network coverage, network uncertainty, critical
infrastructure facilities density, flood zone, and damage assess-
ment priority index. We perform a quantitative analysis for each
of these network parameters for each potential new sensor loca-
tion by calculating each parameter value for the current network
of sensors plus the inclusion of the new potential sensor location.
Potential new sensor locations are defined by a grid over the
study area, with each new location modeled as a square defined by

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00761-1

2 COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:96 | https://doi.org/10.1038/s43247-023-00761-1 | www.nature.com/commsenv

www.nature.com/commsenv


the grid size and the latitude and longitude value at its center.
This definition allows the method to be flexible to having loca-
tions and corresponding grid cell sizes with variable dimensions
based on the region of analysis and its geography or other
characteristics. The total number of possible locations is then
determined by the cell size and extent of analysis, both of which
can be modified as needed by community decision-makers.

At each feasible new sensor location, we calculate the five
network parameters. The methodology presented considers
adding sensors to the network one at a time, rather than the
simultaneous placement of multiple sensors at the same time. The
application of the method to the sequential expansion of the
network with the placement of multiple new sensors over time is
considered later in this paper. The following describes each
network parameter in detail and provides the corresponding plot
of the parameter values across the study area. See the “Methods”
section for further details on the specific calculations for each
parameter.

The network coverage parameter quantifies the increase in
coverage provided by a new sensor location. Network coverage is
measured by the total count of additional feasible locations for
which inundation can be mapped within a 20% error threshold
with the addition of a sensor at a given location. Inundation is
mapped by using an objective mapping algorithm that determines
the inundated areas over a region using a Gaussian error function
with a decay distance of 5 km from a given sensor. The decay
distance indicates the distance over which a sensor’s water level
reading can effectively be interpolated, determines where the 20%
error threshold occurs (i.e., how far from a given sensor), and can
be adjusted as desired by a modeler. For network coverage, the
goal is to maximize the increase in network coverage (i.e.,
maximize the number of additional locations mapped) with the
placement of a new sensor (Fig. 1a).

In Fig. 1, the entire area of analysis is shown, with parameter
values at each location colored from light to dark blue based on
the given scale. The grid cell size is 100 m by 100m. Waterways
are shown in underlying grey. In Fig. 1a for network coverage, the
number of added locations covered with the addition of a new
sensor at a given new sensor location—measuring increased
network coverage—is shown. The darker blue indicates more new
locations are added; the lightest blue indicates that no new
locations are added. Because the existing sensors, shown as
triangles, already provide coverage over some of the areas, the
locations closest to the existing sensors have the lowest increase in
network coverage and are therefore the lightest color. The darkest
blue areas indicate the locations where it is most effective to
locate a new sensor to increase the network coverage.

Network uncertainty is measured by the mean error value
across the inundation map with the addition of information from
each new possible sensor location solution. This error value is
calculated simultaneously with the network coverage parameter
when building the inundation map using a Gaussian error
function and a decay distance of 5 km from a given sensor. It
represents the confidence level associated with the interpolated
water level at each point in the solution space, i.e., based on
proximity to the water level sensors in the network, with a higher
percent error indicating lower confidence. The objective is to
minimize the uncertainty or maximize the decrease in error, from
placing a new sensor in the network (Fig. 1b). In the figure, the
darkest blue represents the lowest mean percent error over all
locations, indicating it is most effective to place a sensor in these
locations to decrease network uncertainty.

In the assessment of critical infrastructure facilities density, we
include hospitals, police stations, power facilities, and schools.
These facilities were chosen based on priorities indicated by the
Chatham Emergency Management Agency (CEMA). Additional

facilities can be included in the methodology based on specific
community preferences using the same analysis approach. We use
a kernel density measure to capture the new sensor proximity to
critical infrastructure to maximize the ability of new sensors to
measure critical infrastructure flood exposure (Fig. 1c). The
critical facilities are shown in yellow circles. The kernel density is
measured as the number of facilities per square distance. Using a
kernel rather than a point density metric results in a more
continuous outcome for this critical infrastructure facilities
density parameter. In the calculation of kernel density, a
continuous surface is created around each facility, with its value
equal to 1 at the location of the facility and a quartic decay with
distance away from the facility to a value of 0 at a specified radius
from the facility. Figure 1c shows the resulting kernel density,
measured as the number of facilities per square kilometer,
computed using a radius of 1 km. The selected radius can also be
varied based on factors such as the level of urbanization of a
region or the population density served by the critical
infrastructure. In Fig. 1c, the darkest blue indicates locations
with the highest critical infrastructure facilities density values.

As the purpose of installing water level sensors is to provide
real-time flood information across the community, flood zone
information is also critical to include. FEMA flood zones are used
as a proxy for the likelihood of flooding in each area across the
county, with the goal of providing more detailed water level
monitoring at higher likelihood flood locations (Fig. 1d). The
defined flood zones for Chatham County are as follows. Flood
zone VE and all A zones indicate areas subject to the 100-year
flood, i.e., they will be inundated by the flood event having a 1%
chance of being equaled or exceeded in any given year. Flood
zone VE is denoted as the highest risk area because, in addition to
being subject to the 100-year flood, it is located in a coastal area
with additional coastal hazard exposure including exposure to
storm-induced waves >3 feet. Subgroups of zone A include zones
AE, AH, and A99. Compared to zone A, zone AE includes
additional base flood elevation (BFE) information indicating the
elevation for which floodwater is anticipated to rise during the
100-year flood, obtained from performing detailed hydraulic
analyses of the area. Thus, with the lack of information, zone A—
where detailed hydraulic analyses have not been performed and
BFE information is not available—is categorized as the next
highest risk area, followed by zone AE. Zone AH is subject to
shallow flooding of 1–3 feet with anticipated impacts that are less
severe, and zone A99 indicates areas that will be protected by a
Federal flood protection system. Therefore, these two zones
comprise the next highest risk category. Next, zone X_500 has a
moderate flood risk, indicating areas that lie between the limits of
the 100-year and 500-year flood events. Zone X are low flood
hazard areas and lie outside the 500-year floodplain. All zones are
shown in Fig. 1d. Open water, where a FEMA flood zone
designation is not applicable, is indicated with hatched lines. In
the figure, the darkest blue indicates locations with the highest
flood risk.

Finally, social vulnerability is included through an index
developed by CEMA called the Damage Assessment Priority
Index (DAPI). This metric combines multiple socioeconomic and
social vulnerability indicators and is currently used during
CEMA’s disaster (e.g., floods, hurricanes) response process to
prioritize damage assessment activities. Specifically, it includes
socioeconomic indicators (households below the poverty level,
homes that receive SNAP assistance, unemployed population),
vulnerable residential indicators (number of households that are
renter-occupied and owned with no mortgage), and vulnerable
housing unit indicators (type of housing unit, number of mobile
homes, small/medium/large multi-unit homes). Locations are
ranked based on these three sets of indicators from most

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00761-1 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:96 | https://doi.org/10.1038/s43247-023-00761-1 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


vulnerable (lowest ranking number) to least vulnerable (highest
ranking number), and the DAPI is composed of the sum of these
three rankings. The DAPI is used here in collaboration with
CEMA to prioritize locations of new sensors near more

vulnerable areas in the county (Fig. 1e). Final DAPI values range
from 1009 to 3411. A lower DAPI ranking value indicates higher
vulnerability and higher priority for locating new sensors, shown
as the darkest blue locations in the figure.

Fig. 1 Sensor network parameters. a Network coverage is measured by the number of added locations covered by placing the sensor in the new location.
b Network uncertainty measured by the mean error in the inundation map. c Critical infrastructure facilities density as measured using a kernel density.
d FEMA flood zones indicating the likelihood of flooding. e Damage Assessment Priority Index (DAPI) ranking social vulnerability.
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As of April 2021, 30 sensors had been installed in Chatham
County using largely qualitative approaches. The methodology
proposed in this study was applied to provide decision support in
identifying the locations for the next round of sensor installations in
the county. Each sensor network parameter, as applied to the county
and each potential new sensor location solution, is taken into
account in the methodology (Fig. 1, see the “Methods” section for
more detailed descriptions of the calculations of each parameter).

Assessing the full solution space of possible sensor locations.
With the sensor network parameter values, we use these as inputs
to identify optimal locations for the new sensor installations. Each
parameter value is viewed as an objective in the optimization,
leading to the formulation of a multi-objective optimization
problem. With the goal of providing decision support in placing
new sensors while maintaining local expertise and experienced
intuition in deciding on new locations for the sensors, the pur-
pose of the optimization is not to find a single best new location,
but a small collection of feasible solutions so that the decision-
makers are able to have clear quantitative analysis-based infor-
mation from which to determine the final locations.

The full solution space for new sensor locations is defined by
an extent, or bounding region, within which the sensor network
parameter values are computed for all locations. We then map the
waterways within this bounded region to show which of all the
locations are feasible solutions for the installation of the flood
level sensors for water level monitoring, which may consist of
rivers, lakes, wetlands, open ocean waters, and other potential
locations. Chatham County is bounded by the Ogeechee River,
Savannah River, and the Atlantic Ocean. As the sensors measure
water levels, this system of waterways within the county is the
initial solution space for analysis. To facilitate ease of access for
maintenance, ocean-facing locations and marshlands within the
waterways are excluded from the solution space. The major
waterways and their network of tributaries used as the solution
space define the final extent of the analysis and cover the full set
of feasible solution locations (Fig. 2a).

Next, the resolution of the analysis must be determined.
Although it is most ideal to be able to conduct the analysis at a
fine resolution, computational time and power need to be
considered when determining a final resolution. Based on the
resolution of layers utilized to compute each sensor network
parameter, and in collaborative discussions with County officials,
a final resolution of 100 m was selected for the Chatham County
case. We have found this resolution to ensure sufficient detail in
the level of analysis while maintaining computational efficiency.
In general, collaborating with decision-makers about the final
extent of the geographical area covered in the solution space and
the desired and feasible resolution is essential. In addition, both
area and resolution parameters can be adjusted over time as
different goals are prioritized by decision-makers.

Obtaining the solution locations. Once the full solution space
and appropriate resolution have been defined, we calculate the
sensor network parameters for each feasible solution throughout
the solution space (Fig. 2b–f). Metrics are quantitatively calcu-
lated and indexed by a coordinate pair (latitude, longitude) at the
center of each grid cell, defined by the resolution, in the solution
space. To compare metrics across feasible solutions and prioritize
potential new sensor locations based on the calculated parameter
values, we create an array for each possible solution that consists
of the coordinate pair and five independent values, each corre-
sponding to a different sensor network parameter. In Fig. 2, for
each parameter, the darkest colors indicate prioritized locations
based on the value of that parameter.

With these location-specific parameter values, the goal of the
optimization process is to prioritize a subset of these solution
locations that provide improved performance for the network
across multiple objectives. Each sensor network parameter is
viewed as a performance objective; hence, a multi-objective
optimization problem is formulated. Using a multi-objective
optimization algorithm, we find the resulting set of non-
dominated solutions, where a non-dominated solution is one
where none of the objective functions can be improved without
degrading some of the other objective values. We achieve this by
implementing a multi-objective optimization algorithm to find
the Pareto frontier of the full solution space. The result is the
prioritized set of solution locations, also known as the Pareto set,
that is optimized across the multiple sensor network parameter
values (see the “Methods” for more detailed description of the
multi-objective optimization problem formulation). The prior-
itized Pareto set of non-dominated solutions is communicated to
the community decision-makers for the final selection of new
locations for sensor placement.

For the resolution and extent of analysis for the full solution
space for Chatham County, the result is a total of 28,890 possible
solution locations across the county, represented by coordinate
pairs located at the center of each grid cell throughout the
solution space. Having such a large number—almost 30,000—of
potential locations for new sensor installations is impractical for
decision-makers to effectively select from. Thus, the objective of
the proposed methodology is to find a smaller optimal set from
this group of locations to support more effective community
decision-making. For the Chatham County case, implementing
the multi-objective optimization algorithm over the full solution
set reduces the original set of 28,890 possible sensor locations to a
set of 381 non-dominated solutions. This result represents just
over one percent of the original set (1.3%). The reduction from
the full solution set to the prioritized set of locations indicates the
ability of the methodology to select a much smaller subset of
solutions from the original full solution space. The results provide
decision-makers with a reduced set of solutions from which an
effective and feasible decision can be made.

To further facilitate communication of the prioritized set of
new sensor locations with community decision-makers, the set of
non-dominated solutions, along with the computed metrics for
each solution, are plotted geographically with the coordinates of
each solution (Fig. 3). For the Chatham County case, most of the
found potential locations for new sensors are not near the current
sensors, indicating that the selected locations help the network to
grow in coverage. From the methodology, the selected locations
also consider and optimize new locations based on the other
uncertainty, flood hazard, and social vulnerability metrics.
Moreover, from the solution locations found, most potential
locations are clustered, so decision-makers do not need to choose
from 381 locations but instead from dozens of clusters. These
solution clusters are highlighted in Fig. 3. Since the overall
methodology is meant to be a decision support tool, utilizing an
interactive geographic information system-based interface to
visualize and communicate the prioritized solution set allows
users to weigh the benefits and drawbacks of potential new sensor
locations. Decision-makers can identify clustered regions of non-
dominated solutions, understand the value of certain locations
through the visualized metrics, and use their geographic expertise
and intuition from experience to select a specific location within a
clustered region to support a sensor installation.

Supporting sequential expansion of the network with new
sensors over time. One of the keys in the methodology is that the
process of expanding a network of sensors is a continuous one. As
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more funds become available and sensor technologies become less
expensive and more widely available, more sensors can be
installed over time. The decision of locations to install new sen-
sors is not a one-time decision. Instead, as we have found in the

work with Chatham County, it is desired to be able to continually
and optimally expand the sensor network over time. The meth-
odology proposed in this study supports a sequential expansion of
the network with new sensors over time. To do this, the

Fig. 2 Sensor network parameters calculated for all possible solution locations. a Extent of the solution space covering a full set of feasible solutions.
b Network coverage over the extent. c Network uncertainty over the extent. d Critical infrastructure facilities density as measured using a kernel density.
e Flood zone over the extent. f Social vulnerability ranking as measured by the Damage Assessment Priority Index (DAPI).
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methodology is run to find optimal new sensor locations. These
found sensor locations are then tested by going through the
methodology again and including the coordinates of the new sensor
locations when computing the varying sensor network parameters.
This then provides updated results considering how the new sensor
locations affect the next set of non-dominated solutions.

What follows is a description of how we combined the
obtained solution location results from the proposed multi-
objective optimization methodology with local expertise from
community decision-makers to place new sensors in the water
level sensor network in Chatham County (Fig. 4). Beginning with
the sensors in the existing April 2021 network (purple triangles),
we ran the proposed multi-objective optimization model,
resulting in the prioritized Pareto set of potential new sensor
locations (green circles). From the research team’s collaboration
with Chatham County officials, five main clusters of resulting
non-dominated solutions were identified and considered for new
sensor placement. The described process provides examples of the
real-world considerations that come into play in actual sensor
placement decisions and insights into how the proposed
methodology has been and can be implemented in practice.

Considering cluster A of potential solution locations, we see
that is located in the middle of an area of several existing sensor
installations. Community decision-makers noted they had
stopped considering this area for new sensors due to the number
of sensors already in the area. However, on closer analysis of the
model results, they realized there are no sensors specifically
targeting this tributary river. Using satellite imagery, they found
private boat docks that would be suitable for installing a sensor
and easily accessible for future maintenance, contacted the
owners of the docks, and came to a decision on where exactly
to install the new sensor (orange triangle).

Another cluster of solutions investigated was seen by cluster B
on the map. However, this tributary river was recognized as being
controlled and monitored by Chatham Engineering using flood-
gates and was therefore removed from the extent for future
analysis. The solution locations in cluster C were found to
effectively address multiple objectives, including network cover-
age, critical infrastructure, and vulnerable communities. However,
this major river is populated by corporate shipping docks.

Through the model results and visualization of network
parameter values at this location, city officials see the benefit of
locating a new sensor in this area. Thus, they have been working
to obtain access permits for a new sensor installation at this
location. It is noted that the existing sensor near that cluster is
installed on one of the few city-owned plots in the area.

Cluster D shows a cluster of solutions that would improve both
network coverage and uncertainty around a few sensors already
located inland, so a location for a new sensor installation was
selected in that area based on the model results. One of the main
objectives in this round of sensor installations was to gradually
move the network inland. Therefore, a sensor was installed at
cluster E based on the model results. Beyond cluster E, as there
are fewer communities and less infrastructure inland, the most
inland location was not explicitly selected by the optimization
model. However, because monitoring rivers upstream can help
predict how inland rainfall may affect flooding at the coast, a
sensor was installed (blue triangle). Throughout this process,
involving local expertise in deciding the final location of new
sensors ensures that the intuition of community experts still plays
a key role in the network expansion.

After installing these new sensors, the model was run again
with the updated network of sensors, to obtain a new set of
prioritized non-dominated solution locations based on the June
2021 network (gold circles). New regions of interest can be seen,
with new clusters of solutions surfacing throughout the County as
potential new strategic sensor installation locations. The updated
Pareto set no longer includes locations by cluster A, indicating
that the recently installed sensor improved the network
parameters in that area. Solutions are not seen by cluster B since
that tributary river was excluded from the extent. Solution
locations continue to be identified at cluster C, indicating the
priority to find a suitable sensor installation location in that area.
Additional clusters of solutions appear, which can be weighed

Fig. 3 Set of non-dominated solutions resulting from the multi-objective
optimization process. Non-dominated solutions give a prioritized set of
new sensor locations, and clusters of solutions among the full non-
dominated solution set are highlighted.

Fig. 4 Sequential expansion sensor network showing locations of new
sensor installations and evolution of non-dominated solutions after
including a new set of sensors. Existing sensor locations (purple triangles),
prioritized Pareto set of potential new sensor locations found from running
proposed multi-objective optimization model (green circles), five main
solution clusters identified and considered in collaboration with community
decision-makers (dashed red ellipses A–E), selected new sensor locations
based on decision-making process (orange and blue triangles), and new set
of prioritized non-dominated solution locations with an updated network of
sensors (gold circles).
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with community goals in future sensor placement decisions, such
as the goal of continuing to expand the network inland or to
prioritize certain areas for monitoring. The results show how the
sensor network expansion process can be sequentially approached
with every new sensor installation and continuously adjusted to
maintain alignment with community goals. Different scenarios of
new sensor installations can be tested and compared using this
process. Based on a community’s priorities, decision-makers can
consider selecting different sensor locations to improve certain
metrics and achieve selected community goals over time.

Comparison with traditional sensor network expansion
approaches. The prioritized new sensor locations found are based
on the full suite of proposed sensor network parameters,
including sensor-related, flood-specific, and social measures. The
resulting locations are significantly different than those found
using just the traditional sensor network expansion parameters of
network coverage and uncertainty (Fig. 5). From the conventional
two-metric solution, new locations are optimized by filling gaps
in the network coverage, remaining nearby to existing sensor
locations to decrease the uncertainty of the inundation profile but
just far enough from the dense region of sensors to gradually
increase the coverage of the inundation profile. In comparison,
using the full set of parameters as proposed in this study results in
a solution set that still includes some of the previous solutions,
but also provides clusters of solutions in other regions of the
county that account for other sensor network objectives.

Discussion
The installation and use of water level sensors to provide real-
time flood information in coastal communities are becoming
more widespread. Most previous installations of these sensors
have been ad-hoc, however, relying on qualitative judgments to

decide on sensor locations. This approach leaves the process open
to biases and the potential to neglect critical areas of a commu-
nity. The few existing studies on using quantitative measures to
support decisions for sensor placement and network expansion
rely on the limited set of parameters of network coverage and
uncertainty, neglecting such critical factors as flood risk, social
vulnerability, and critical infrastructure exposure.

The results from this study show the importance of simulta-
neously considering a range of factors when deciding on the
placement locations for new sensors for a network of water level
sensors. In this work, we describe five parameters in particular
that cover a wide range of variables of interest to flood-prone
coastal communities. These include network coverage indicating
how much of an area for which information on water levels is
able to be obtained based on the sensor information, network
uncertainty indicating the accuracy of that information, critical
infrastructure facilities density indicating the proximity of a
sensor to provide data on flood exposure of critical assets, flood
zone indicating flood risk of a particular area, and damage
assessment priority index indicating social vulnerability of a
location.

By including all of these parameters in the decision-making
process, the sensors provide information on the wide-ranging
impacts of flood events. In particular, the data considers the
geographical spread of flood events (network coverage), the
complexities and potential errors in assessing and predicting
flooding (network uncertainty), the importance of protecting
critical assets in a community during storms (critical infra-
structure facilities density), the underlying hazard level of an area
(flood zone), and the social vulnerability of the populations
impacted by flood events (damage assessment priority index).

Each of these factors is important for both flood risk mitigation
activities and providing real-time water level information for
emergency flood response. Increasing network coverage with new
sensors means a wider area is able to be monitored during flood
events and a larger area is assessed for flood impacts. Decreasing
network uncertainty increases the confidence of community lea-
ders in the collected sensor data on which to base hazard miti-
gation and emergency response decisions. Increasing monitoring
near critical infrastructure facilities provides real-time informa-
tion on the flood status at these critical facilities that affect human
health and safety (hospitals and police stations), provide critical
services that impact the ability of large portions of the population
to survive and continue to function through storm events (power
facilities), and provide space and resources for flood response
activities (schools). For risk mitigation, prioritizing new sensor
locations near critical infrastructure also provides the hyperlocal
information needed to make site-specific mitigation decisions to
protect individual facilities. Prioritizing data collection in high
flood-risk areas based on flood zone provides information at
locations more likely to experience flood events and severe flood
impacts from storms. Increasing data collection in areas with
higher social vulnerability increases the amount of information
available to use in risk mitigation and emergency response
decisions to decrease the risk for more vulnerable populations.

In applying the approach to other coastal communities, the
sensor network parameters can be directly applied, or adjusted
and tailored to the specific needs and data availability of the
particular location and study area. Network coverage and net-
work uncertainty can be directly applied to any study area, with
variations in the geographical boundaries of the extent of analysis
as desired by community decision-makers. The resolution and
grid cell size for calculation of the parameter values can be
similarly varied, with additional considerations for parameter
data availability and computational complexity. Critical infra-
structure facilities density can be defined based on the accessible

Fig. 5 Comparison between identified prioritized potential new sensor
locations using traditional two metrics of coverage and uncertainty and
using new metrics covering sensor-related, flood-specific, and social
parameters as proposed in this study. Existing sensor locations (purple
triangles); prioritized Pareto set of potential new sensor locations based on
only two metrics of coverage and uncertainty (red circles); and prioritized
Pareto set of potential new sensor locations based on the full set of five
metrics as proposed in this study including network coverage, network
uncertainty, critical infrastructure facilities density, flood likelihood, and
Damage Assessment Priority Index (DAPI) ranking social vulnerability
(green circles).
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information and the priorities of a community in terms of the
specific facilities to be included in the analysis. In addition to the
hospitals, police stations, power facilities, and schools considered
for Chatham County, critical infrastructure that would be of
relevance to consider for coastal communities include bridges, fire
stations, water treatment plants, and wastewater treatment
facilities.

Flood zone assessments of risk are based on nationally available
data and are applicable across the US. Other assessments of flood
hazard risk would be applicable for other international commu-
nities, with the important information to include being the rela-
tive risk of locations across the community and indications of the
hazard areas to prioritize in the methodology. While the parti-
cular calculation of the damage assessment priority index (DAPI)
is specific to Chatham County, its concept is widely applicable to
other locations. If the data used to calculate the DAPI is available
in a particular location, the DAPI can be directly used. Otherwise,
other social vulnerability measures can be included or replaced
with those used in the DAPI according to the available data and
community priorities. The goal of this parameter is to support
flood risk assessment and mitigation activities for the most vul-
nerable populations in a community.

With this range of parameters of importance to consider, in
this study, we present a new methodology that utilizes multi-
objective optimization to rigorously and quantitatively account
for all parameters in the placement decisions for new real-time
water level sensors. Beginning with all possible locations for a new
sensor placement across an area, we show that the approach is
able to effectively reduce the full set of possible locations (28,890
locations in Chatham County, GA) into a much smaller optimal
and feasible set of sensors locations (381 locations). This two-
order-of-magnitude reduction in possible locations shows the
method to provide effective decision support in locating new
sensor placements.

Comparing the solution location results obtained based on the
full set of five parameters with those from using only the tradi-
tional measures of increasing network coverage and decreasing
network uncertainty shows a significant difference between the
two solution sets. The results demonstrate the importance of
including the full suite of sensor-related, flood-specific, and social
measures in the analysis. While this study includes results from
the combined five parameters (network coverage, network
uncertainty, critical infrastructure facilities density, flood zone,
and damage assessment priority index), in extending this work to
other locations and communities, additional parameters can also
be included in the analysis if such data is available and if it is so
desired by community decision-makers. Fewer parameters may
also be used if there is a lack of data on any of them. In either
case, the difference is that the number of objectives in the multi-
objective optimization problem would change to match the
number of parameters. Overall, the key is that we encourage
communities to expand the set of parameters considered in
sensor placement decisions and to systematically and objectively
assess these parameters in making the decision. We find that the
set of five parameters achieves a good balance between basing the
decision on a wide range of information of importance to flood
risk assessment, while not considering too many parameters to
clutter the data presentation to community decision-makers.

To facilitate communication of the results with community
decision-makers, we integrate the solutions from the multi-
objective optimization problem with a geographic information
system visualization. This visualization interface supports com-
munication and assists in placement decisions. Specifically, we
find through the visualization that many of the solution location
results are clustered. Considering each cluster individually enables
decision-makers to utilize their experience and expertise to decide

on final installation locations. In practice, the final locations were
selected within individual clustered solutions. This process
combining the multi-objective optimization with community
leader input enables the sensor placement decisions to be made
based on quantitative analyses combined with locale-specific
factors that may not be captured in the direct assessment of the
varying parameters across the study area of interest.

Considering the long-term monitoring goals for the installation
and maintenance of a real-time water level sensor network in a
coastal community, we also show how the method can be used to
support the sequential expansion of the network. As resources
become available and the size of the network grows over time, the
method we present can be applied again and again to continually
expand the network and ensure that the sensors collect data with
increasing benefit at each step. A further unique aspect of this
study is the ongoing collaboration between the research team and
Chatham County officials. Throughout this study, we demon-
strate how the methodology can be and has been used in a real-
world sensor network deployment, moving the study from the lab
to the community to support real decisions in sensor placement.

Our findings in this study provide a roadmap for other coastal
communities to utilize and implement to create and expand
networks of water level sensors in these communities. The
method enables sensor placement decisions to be made based on
quantitative analyses accounting for multiple objectives, including
sensor-related, flood-specific, and social vulnerability measures.
The resulting workflow for decision-making in strategic and
optimal sensor placement accounts for the quantitative sensor
network parameters while maintaining local expertise and
experienced intuition as key components of the process. The
result is a network of sensors that provides real-time water level
information at the hyperlocal level for flood risk assessment and
mitigation in coastal communities.

Methods
This section describes our multi-objective water level sensor placement method to
provide real-time monitoring of flood levels in coastal communities in further
detail. Let L denote the set of possible locations for new sensor placements. The set
L is defined based on the extent, i.e., bounding region, of analysis; resolution, i.e.,
grid cell size, for analysis; waterways indicating feasible locations for water level
sensor installations; and sensor network coordinates providing locations of any
existing sensors in the network. The goal is to reduce this full set L into a solution
location s. This is accomplished through computing parameter values at each
possible location l 2 L, conducting a multi-objective optimization over these
parameters to obtain a prioritized set of non-dominated solutions P � L, before
selecting the final sensor location s 2 P. The multi-objective optimization includes
five main sensor network parameters: network coverage, network uncertainty,
critical infrastructure facilities density, flood zone, and damage assessment priority
index. Each of these parameters is calculated as follows.

Network coverage. Network coverage of any feasible sensor location l is measured
by computing an inundation mapping algorithm with the current network of
sensors plus location l as a potential new sensor location. The inundation mapping
algorithm uses an objective mapping algorithm to determine inundated areas over
a region. It has been widely used in creating gridded maps of climate and ocea-
nographic data fields using sparse instrumental observations as input24–27. In this
case, the input are the measurements from the water level sensors. The imple-
mented algorithm utilizes a decay distance of 5 km, conservatively optimized using
a Gaussian correlation matrix of the sensor locations throughout the county, over
which a sensor’s water level reading can effectively be interpolated. The decay
distance can also be adjusted as the number and density of sensors within the
network increase over time. Based on this correlation matrix and the water level
readings from all sensors at a given time, a water level layer is generated throughout
the county for all feasible locations. A LiDAR Digital Elevation Model of the county
is then subtracted from the water level layer to compute the inundation layer,
which is a representation of water depth above the ground level throughout the
county at a particular time. To reduce misleading inundation depths, a Gaussian
error function is computed over the correlation matrix to quantify the error at
every feasible location and point of the inundation map. This error value represents
the confidence level associated with the interpolated water level at each point in the
solution space, with higher percent error and lower confidence as the distance from
a given sensor increases and in combination with information from nearby sensors
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if available. Locations are masked out if they have more than 20% error, the
threshold used to provide conservative results for the purposes of emergency
response and city planning. Note that the remaining error values are those used in
the calculation of the network uncertainty parameter described following.

After removing grid cells throughout the inundation map with more than 20%
error, the total count of remaining grid cells is used to calculate the network
coverage. Specifically, to obtain the network coverage parameter value at a possible
new sensor location l, the increase in the number of locations covered by the
network with the new sensor location is calculated by subtracting the number of
grid cells of the currently existing network of sensors (prior to including the new
sensor at location l) from the total count of grid cells after including the new sensor
at location l. The result gives the varying levels of increased value, as measured by
an increase in network coverage, of a sensor placed at a given new location.

If a location l is within a high-density area of currently installed sensors, the
network coverage may not be affected since that area was already included within
the inundation mapping extent. That is, the surrounding locations were likely
already included in the inundation map, and adding a new sensor in that location
will not lead to a significant increase in the number of locations covered by the
network. Adding a sensor at such a location will, however, likely improve the
network uncertainty, as discussed below. If a location l is just outside the extent of a
high-density area of currently installed sensors, the network coverage will likely be
improved, as it provides information on water levels at a large set of new locations.
If a location l is in an isolated area with no other nearby sensors, the network
coverage may not be significantly affected since a single sensor may not provide
high confidence inundation mapping, i.e., <20% error, for the region surrounding
the isolated sensor. This holds true when adding sensors to the network one at a
time. The outcome may change when considering the sequential expansion of the
network with new sensors over time, as discussed in this paper. However, solving
the problem for multiple sensors at the same time is not considered in this paper as
it significantly increases the complexity and computational costs of the problem. At
the same time, if a particular region has been identified by community decision-
makers as a target for network expansion, the methodology presented in this paper
can be adjusted to prioritize placing sensors in this new location.

Network uncertainty. Uncertainty at a possible new sensor location l is calculated
simultaneously with coverage. Location l is included as a potential new sensor
location when computing the inundation mapping algorithm, regions with greater
than 20% error are removed as described in the calculation of the network coverage
parameter, and then the mean error of all the remaining inundation grid cells is
computed to calculate the network uncertainty parameter value associated with
location l. Since water levels are likely to vary over short distances along a river,
coast, or wetland area28,29, co-locating sensors, or installing sensors near one
another, i.e., by installing a new sensor near an existing sensor, can reduce the
uncertainty of the inundation in that region, and hence reduce the average
uncertainty, i.e., mean percent error over all locations, associated with a specific
location l (even though the coverage may not be affected in this scenario).

Critical infrastructure facilities density. We use a metric of the density of critical
infrastructure facilities per unit area to capture the proximity of potential new
sensors to critical infrastructure. Given the locations of the critical facilities in an
area, it is possible to calculate the number of facilities per area for each feasible
location. However, this would result in a fixed value for nearby solutions, making it
difficult to compare solutions for prioritization purposes. It also neglects to include
specific values of distances to critical infrastructure facilities. To avoid this problem,
we use a kernel density algorithm to quantify the density of point features by
generating a kernel (smoothly curved surface) around each feature. The surface
value is highest at the location of the facility and diminishes with distance, reaching
zero at a radius r. Specifically, the density value is equal to 1 at the location of the
facility, with a continuous quartic decay with distance d away from the facility30,
until it reaches a value of 0 at d ¼ r. For each possible sensor location l, the value of
the critical infrastructure density is calculated as:

Il ¼
1
r2
∑n

i¼1
3
π

1� di
r

� �2
 !2

ð1Þ

where r is the radius where the value of the kernel per point reaches zero, n is the
number of facilities within the radius r, and d is the distance between a facility i and the
coordinate location of location l. The resulting units of the kernel density are still the
number of facilities per square distance. However, using this algorithmmakes the result
of each location more continuous compared to a simple density algorithm because
using kernels includes not only the number of close facilities but also the distance
between each one of them. The result is a more continuous distribution of critical
infrastructure facilities' density compared to using a simple point density approach.

Flood zone. To assess areas with a higher or lower risk of experiencing flooding in
a year, we use flood risk values calculated from FEMA’s assigned flood zones, and
geographic areas depicting varying levels of flood likelihood and hazard exposure.
In the definition of flood zones, a 100-year flood is a flood event having a 1%
chance of being equaled or exceeded in any given year. Base flood elevation (BFE)
is additional information obtained from performing detailed hydraulic analyses of

the area indicating the elevation for which floodwater is anticipated to rise during
the 100-year flood. The 500-year flood is a flood event having a 0.2% chance of
being equaled or exceeded in any given year. These parameters contribute to the
designated flood zone for a particular location. For Chatham County, the following
flood zones are defined, ranging from high to moderate to low flood risk:

High flood-risk areas.

● Zone VE: Subject to the 100-year flood. Additionally located in a coastal
area subject to additional coastal hazards such as storm-induced waves
greater than 3 feet.

● Zone A: Subject to the 100-year flood. No BFE information is available.
● Zone AE: Subject to the 100-year flood. BFE information is available.
● Zone AH: Subject to the 100-year flood, but subject to shallow flooding of

1–3 feet.
● Zone A99: Subject to the 100-year flood, but will be protected by a Federal

flood protection system.

Moderate flood risk areas.

● Zone X_500: Lies between the limits of the 100-year and 500-year flood
events.

Low flood risk areas:
● Zone X: Lies outside the 500-year floodplain.

For further details on the definitions of flood zones, refer to ref. 31.

Damage assessment priority index. The damage assessment priority index
(DAPI) used in this study as a measure of social vulnerability and prioritization has
been developed by the Chatham Emergency Management Agency (CEMA) in
Chatham County. The DAPI is composed of three main components: socio-
economic indicators (SEI), vulnerable residential indicators (VRI), and vulnerable
housing unit indicators (VHI). Each component is calculated for an area in Cha-
tham County ranging in size from census blocks to census tracts based on available
data. The smallest possible resolution is used as available. The SEI is composed of
metrics for households below the poverty level, those homes that receive SNAP
assistance, and the unemployed population. The VRI measures the number of
households that are renter-occupied and owned with no mortgage. The VHI
considers the type of unit in the region, i.e., the number of mobile homes, and
small/medium/large multi-unit homes. Each of the areas is ranked based on the
SEI, VRI, and VHI, with the lowest ranking number, i.e., a rank of 1, indicating the
highest vulnerability, and the highest ranking number indicating the lowest vul-
nerability. The DAPI is then composed of the sum of the three rankings, and the
vulnerability of location l denoted Vl is calculated based on the sum of the rankings
of the vulnerability indicators at that location:

Vl ¼ DAPIl ¼ RANKSEIl
þ RANKVRIl

þ RANKVHIl
ð2Þ

In the calculation of the DAPI, the three sets of indicators—SEI, VRI, and VHI
—are equally weighted. These factors can be weighted differently based on
decision-maker prioritizations. Additional metrics can also be included or replaced
based on the available data, as long as the same factors are used across all locations
in the study area. The final range of the DAPI across the locations in Chatham
County is from 1009 to 3411, with the lowest values indicating the most vulnerable,
and therefore highest priority, locations.

The DAPI has multiple benefits to identify community vulnerability compared
to other metrics. For instance, most metrics must standardize the resolution of
social vulnerability (e.g., at the census tract level). On the contrary, DAPI is able to
provide increased resolution information given data availability in Chatham
County. The DAPI calculation process generates social vulnerability data at a
higher resolution compared to the conventional Social Vulnerability Index
(SoVI)32–34. This is shown by the population number per area of an index value—
where the lower population per area indicates higher precision information
produced by the metric. Specifically for the two metrics DAPI and SoVI, while the
mean population per polygon for SoVI in Chatham County is 4062, the one for
DAPI is 462, 8.8 times lower, providing more precise information on social
vulnerability across the county.

Multi-objective optimization problem formulation. Based on these calculated
sensor network parameters at each potential new sensor location l, we formulate a
multi-objective optimization function. The result is to find and prioritize a set of
solution locations P that improves on outcomes across multiple objectives. Each
sensor network parameter is an objective in the function. The goal is to find the
prioritized solution set P within the full solution space of possible sensor locations
L according to the objective function:

max
l2L

Cl;�Ul ; Il ; Fl ;�Vl ð3Þ

where for a potential solution location l, Cl indicates network coverage, Ul network
uncertainty, Il critical infrastructure facilities density, Fl flood zone, and Vl social
vulnerability.
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Note that this is an unconstrained maximization problem. However, both the
uncertainty Ul and the vulnerability Vl need to be minimized given the properties
of the parameter. Therefore, a minus sign is included in these two functions.
Moreover, there is no need to include constraints in the problem because the model
is only going to evaluate solutions from the pre-established set of feasible solution
locations L from the full solution space.

To provide communities with decision support rather than having the
algorithm directly make the sensor location decisions, we do not weigh the
performance metrics in the mathematical model. For instance, for Cl indicating
increased network coverage and Il indicating critical infrastructure facilities density
for a potential solution location l, the model should not decide between a location
l1 ¼ C1 ¼ 1000; I1 ¼ 5

� �
(i.e., with coverage of 1000 added locations and

infrastructure density of 5 facilities per square km) and l2 ¼ C2 ¼ 500; I2 ¼ 10
� �

(i.e., with coverage 500 added locations and infrastructure density 10 facilities per
square km). Instead, the model provides both of these as possible solution locations
to the decision-maker.

To accomplish this, we use a non-compensatory model that compares each
feasible solution and only discards those that are sub-optimal across the
optimization function. For example, a potential solution location l3 ¼
C3 ¼ 300; I3 ¼ 3
� �

would be discarded in comparison with the locations l1 and l2
because it has lower coverage and infrastructure facilities density than both l1 and
l2, i.e., it performs worse across both measures. The solution location l3 has no
benefit ahead of l1 or l2, and is therefore discarded. The methodology that allows us
to discard poor feasible solutions that are implemented in this study is to find the
Pareto frontier of the full solution space. To obtain the Pareto frontier, we
implement a multi-objective optimization algorithm that finds the set of solutions
that are non-dominated35–37.

The output of the Pareto algorithm is composed of prioritized set of solutions P
from the total feasible set of locations L. The size or cardinality of subset P � L
depends on the distribution of values on each sensor network parameter value. For
example, in a problem with 20,000 feasible solutions, there can be 1–20,000 solutions
in the Pareto set. However, given the nature of the parameters used in this problem, it
is expected to find non-dominated Pareto sets composed of <5% of the original set. We
have found this to be the case with our demonstration of the approach on the sensor
network in Chatham County.

The resulting subset of solution locations P are the prioritized solutions that are
optimized across the sensor network parameter values and that are communicated

to decision-makers. From these, the final solution location s is selected for the
placement of the new sensor. For use of this approach in a sequential expansion of
a sensor network, the parameters are then recalculated for the remaining locations,
and the multi-objective optimization re-run to obtain a new prioritized set of
solution locations P, from which the next final solution location is selected until all
sensors are placed.

The full flowchart of the methodology shows both the process of how to select
the optimal solution location s in placing an individual new sensor and its use
within a larger sequential expansion process (Fig. 6). N denotes the total number of
sensors to be placed within the water level sensor network. N ¼ 1 for a single
sensor placement location decision. Collaborations with community decision-
makers throughout the process are essential, particularly in defining the initial
extent boundaries and location resolution, and in selecting final sensor locations
from the prioritized non-dominated set, i.e., in selecting s 2 P. The process
proceeds until optimized and feasible locations have been selected for all sensors.

Data availability
The water sensor network data for Chatham County, GA, is available at a publicly
accessible web portal developed as a collaboration between the research team and the
Chatham Emergency Response Agency (CEMA). The portal can be accessed at https://
perceptive-bay-214919.appspot.com/?layers=sensors.

Code availability
The code used to analyze and visualize the data used in this study is freely available at the
online open repository Zenodo https://doi.org/10.5281/zenodo.7637394. Researchers and
community members are encouraged to access this information and to contact the
corresponding author as needed regarding the applicability of the work to new study
areas and coastal community locations.
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