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Abstract The temperature and time-dependent heat

of hydration of cementitious pastes is a fundamental

property to understand concrete performance. Cement

hydration can be depicted using kinetic models by

considering the effect of the chemical and physical

properties of the cementitious pastes and the curing

conditions. Supplementary cementitious materials and

fillers are used as partial replacements for Portland

cement to advance concrete performance and durabil-

ity, which can exert varying effects on hydration

kinetics. This adds a level of complexity that is

difficult to capture with existing modeling methods.

Here, the time and temperature-dependent heat of

hydration of cementitious pastes was predicted using

the machine learning Gaussian process regression

(GPR) with information on the chemical and physical

characteristics of the cementitious systems. Results

show that high-fidelity heat of hydration predictions

can be achieved using the GPR model when compared

with isothermal calorimetry experiments. Moreover,

the predicted heat of hydration was successfully used

to perform mass concrete thermal modeling, which

demonstrates the applicability of the model when

upscaled to depict concrete performance.

Keywords Heat of hydration � Calorimetry �
Machine learning �Gaussian process regression �Mass

concrete

1 Introduction

Cement hydration is a highly exothermic process.

Determining the rate of heat release and the cumula-

tive heat of hydration is essential in understanding

cement behavior and useful in predicting the property

evolution of the hardening material. In massive

structures for instance, the exothermic nature of

cement hydration leads to a rise in heat energy in

concrete elements and a subsequent temperature rise.

Information on the heat of hydration of cementitious

mixes is required to predict the heat of hydration of
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concrete and the adiabatic and internal temperature

rises in mass elements. Adiabatic refers to the

maximum theoretical temperature that concrete can

attain. Internal temperatures are calculated from

information on the adiabatic temperature rise, the

initial placement temperature, and any losses due to

heat transfer with the surroundings [1].

For a certain mix design, finding the adiabatic

temperature rise requires that heat of hydration time-

histories are measured at a range of isothermal

temperatures thought to be representative of mass

concrete temperatures. Isothermal calorimetry is a

widely used, robust, and standardized laboratory

technique, in accordance with ASTM C1679 [2], to

measure the rate of heat release of cementitious mixes

at isothermal test temperatures. The rate of heat

release, also known as power, is related to the rates of

reaction of a given system. Cumulative heat of

hydration is calculated as the area under the rate of

heat release curve. The procedure to find adiabatic

temperature rise from isothermal calorimetry heat of

hydration can be found in the literature [3–5].

As an alternative to the experimental isothermal

calorimetry, semi-empirical kinetic-based models can

be used to model the rate of heat release and

cumulative heat of hydration of cement when infor-

mation about the chemical and physical characteristics

of the cement is available. The mechanisms control-

ling the hydration of cement can be explained by

dividing the rate of heat release curve into three main

periods: (1) up to the induction period, (2) the main

hydration peak, and 3) the period after the hydration

peak [6]. In a recent review on C3S hydration, which is

the most abundant phase in the cement composition

and controls early age hydration, it was demonstrated

that different mechanisms control the different hydra-

tion phases. The induction phase is best modeled by

dissolution controlled by undersaturation. The main

hydration peak is explained by C–S–H precipitation

on cement grains in the form of needles. And finally, a

combination of space-filling, precipitation, and disso-

lution mechanisms needs to be considered for the third

and last phase [7]. Therefore, each period requires a

separate model in its simulation. Moreover, accurately

modeling the heat of hydration requires including the

contribution of other phases, like C3A, which compli-

cates the modeling process.

In addition to cement, the concrete mix design can

also include supplementary cementitious materials

(SCMs) and fillers, which impact the heat of hydration

development [8]. SCMs and fillers are used to improve

the performance of concrete to be more suitable for

specific use (e.g., enhancing a concrete’s durability

performance) and promote more sustainable concrete

mix designs [9]. In mass concrete, SCMs are used as a

partial low-heat replacement for Portland cement to

reduce the maximum concrete temperatures. SCMs

include fly ash and slag. Limestone is an example of a

filler. The addition of these materials means that an

appropriate model needs to be able to simulate all the

phases and materials in a specific mixture, which

further complicates the modeling procedure. Finally,

additional considerations would need to be made to

consider the effect of different curing temperatures on

the heat of hydration development [10].

Since a single kinetic model that describes the

entirety of the heat evolution process does not capture

the complexity of the reactions, a combination of

models which describe different phases can be used.

The latter approach renders the modeling efforts

complicated and labor-intensive [11]. Alternative to

kinetic-based models, empirical models exist in the

literature to find the rate of heat release and cumulative

heat of hydration. Schindler and Folliard proposed a

three-parameter exponential model to fit the cumula-

tive heat of hydration curves [12]. The three param-

eters can be found either by performing calorimetry

experiments to find the best fit of the model or using

regression models that have been trained on the

characteristics of a few hundred cementitious systems

[13]. There are a few drawbacks to using the three-

parameter exponential model, which include the

inability of the regression models for the three

parameters to explain more modern cements and the

inability of the form of the three-parameter exponen-

tial model to fit heat of hydration curves of more

complicated systems, such as those containing high

amounts of fly ash or slag [14].

There is a critical need for a modeling approach that

is capable of accurately predicting the heat of hydra-

tion of more complex blended cementitious systems

and at various curing temperatures to be used for mass

concrete analysis. A promising approach to predict the

properties of cement and concrete using artificial

intelligence machine learning approaches [15], which

would overcome some of the complexities associated

with more analytical models. For example, machine

learning has been used to predict cement phase
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mechanical properties [16] and constituent phases [17]

from microstructural maps. Mechanical and thermal

properties of concrete have also been predicted, such

as compressive strength [18], thermal conductivity

[19], the coefficient of thermal expansion [20], and the

adiabatic temperature rise [21, 22], among many other

applications. More specific to the heat of hydration,

Wang et al. have modeled early age hydration kinetics

using a flexible neural tree algorithm for Portland

cement (PC) [23]. Similarly, early age hydration

(* 24 h) predictions for blended cements containing

limestone and metakaolin have been performed by

Cook et al. with high-fidelity using random forests

[11]. The previous examples demonstrate the promise

of using machine learning techniques to predict

materials performance by providing knowledge of

cementitious systems’ physical and chemical

characteristics.

Prior machine learning efforts to predict heat of

hydration have explored PC systems [23] or blended

systems. However, these are not appropriate for mass

concrete; i.e., they contain high heat metakaolin [11].

Moreover, the existing models predict hydration

kinetics at room temperature only. Here, a Gaussian

process regression (GPR) model is proposed to predict

the cumulative heat of hydration used in the thermal

simulation of mass concrete structures. GPR is a non-

parametric regression method, which makes it gener-

alizable even when trained on small datasets, such as

that developed here. Moreover, GPR is a Bayesian

approach [24], and therefore provides an uncertainty

estimate for its predictions which is useful for

decision-making processes [25], including the design

problem addressed here. In this work, the predictions

are performed for blended cements containing fly ash,

blast furnace slag, limestone, or a combination of the

above, at curing temperatures ranging between 5 �C
and 60 �C. A database of mixes with different

cementitious physical and chemical characteristics,

SCM and filler substitution, water/solids ratio (w/s),

and curing temperatures was considered. The pro-

posed model was validated against an instrumented

concrete structure to assess the prediction quality of

maximum temperatures in two mass concrete mid-

scale experiments.

2 Materials and methods

2.1 Data collection

2.1.1 Isothermal calorimetry

Isothermal calorimetry provides an experimentally

measured rate of heat release in watts, also denoted as

thermal power (P), as a function of time at a given

isothermal temperature. The thermal power per gram

of solids can be found by normalizing the experimen-

tal curves with respect to the mass content of solids in

the overall test specimen. The cumulative heat of

hydration (H) in Joules per gram is the area under the

normalized thermal power curve, as by definition:

H tð Þ ¼
Z t

0

P tð Þdt ð1Þ

Isothermal calorimetry tests were conducted in

accordance with ASTM C1679 [26] on 23 different PC

and blended PC-SCM mixes. The materials included in

the tests were two different ASTM C150 Type I/II

Portland cements (PC1, PC2), ASTM C150 Type II

(MH) cement, ASTMC618Class C fly ash (FC), ASTM

C618 Class F fly ash (FF), Class CF fly ash which is a

blend ofClass C andClass F fly ashes (FCF), andASTM

C989Grade 100 blast furnace slag.Thew/s ratios ranged

between 0.35 and 0.55. The tests were performed at

temperatures 10, 23, 30, 40, 50 and 60 �C. This results in
a total of 133 isothermal calorimetry tests. Table 1 shows

a summary of the mix designs of the performed tests.

The testswere performed using an eight-channel (TAM

Air) microcalorimeter, which has a precision of �2mW

and an accuracy greater than 95%. The temperature of

the specimens was kept as close as possible to the

temperature of the calorimeter to avoid condensation.

Specimens were heated using an electric oven to

maintain the temperature of water and cementitious

materials between 30 and 60 �C before mixing. An

environmental chamber was used to maintain the

materials at 10 �C.

2.1.2 Data supplementation

In addition to the performed isothermal calorimetry

experiments (denoted source 1), the database was

supplemented using the heat of hydration histories

collected from the literature, as follows: a dataset of 40
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different PCmixes and blended mixes containing fly ash

and blast furnace slag, conducted at 5 different temper-

atures (5, 15, 23, 38 and 60 �C), resulting in a total of 200
observations (source 2) [27], 40 heat of hydration curves

of PC and limestone cement pastes with fly ash and slag

substitutions at room temperature (source 3) [28], 29

curves of PC pastes, limestone cement pastes, and PC-

limestoneblends at roomtemperature (source4) [29], and

5 tests of PC paste at different temperatures (source 5)

[30]. The total number of tests is therefore 407,where 133

are unique cementitious systems and the remaining

include variations of the same systems at varying test

temperatures. The data from the different sources is

different due to the varying temperatures and different

SCMsused.However, the data has beengrouped together

since all isothermal calorimetry tests were performed

following the same methodology.

2.2 Machine learning approach

A machine learning approach was utilized to create a

model for the prediction of the cumulative heat of

hydration. The model is applicable and generalizable to

mix designs whose properties are similar to those used

for training themodel, i.e. those containingASTMC150

Type I/II cements, ASTM C595 Type IL cements, and

the following supplementary materials: low-lime fly

ash, high-lime fly ash, blast furnace slag, and limestone.

Many of the mix designs were selected based on their

common use for mass concrete construction.

2.2.1 The selection of features

The output of the machine learning model is the

cumulative heat of hydration in Joules per gram of

paste solids. The cumulative heat of hydration evolves

with time, and therefore its values were retained every

around 30 min up to 72 h. This culminates in a total of

106,814 total recorded instances. The predictors, or

input features, were selected based on their known

exothermic effects on the heat of hydration during the

first 72 h. Since the heat of hydration is time-

dependent, time (hrs) is included as a feature. A

change in the curing temperature (or the isothermal

Table 1 Mixes used in

isothermal calorimetry tests
No. Cement type SCM type SCM (mass %) w/s ratio Test temperature (�C)

1 PC1 – – 0.35 10, 23, 30, 40, 50, 60

2 PC1 – – 0.45 10, 23, 30, 40, 50, 60

3 PC1 – – 0.55 10, 23, 30, 40, 50, 60

4 PC1 FF 20 0.35 10, 23, 30, 40, 50, 60

5 PC1 FF 40 0.35 10, 23, 30, 40, 50, 60

6 PC1 FF 20 0.45 10, 23, 30, 40, 50, 60

7 PC1 FF 40 0.45 10, 23, 30, 40, 50, 60

8 PC1 FC 40 0.35 10, 23, 30, 40, 50

9 PC1 FC 20 0.45 10, 23, 30, 40, 50, 60

10 PC1 FC 40 0.45 10, 23, 30, 40, 50, 60

11 PC1 FCF 20 0.35 10, 23, 30, 40, 50, 60

12 PC1 FCF 40 0.35 10, 23, 30, 40, 50, 60

13 PC1 FCF 20 0.45 10, 23, 30, 40, , 50, 60

14 PC1 FCF 40 0.45 10, 23, 30, 40, 50, 60

15 PC1 Slag 40 0.45 10, 23, 30, 40, 50, 60

16 PC1 Slag 60 0.45 10, 23, 30, 40, 50, 60

17 PC2 – – 0.45 10, 23, 30, 40, 50, 60

18 PC2 FF 25 0.45 23, 50, 60

19 PC2 FF 45 0.45 10, 23, 30, 40, 50, 60

20 PC2 FF/Slag 25/20 0.45 10, 23, 30, 40, 50, 60

21 MH – – 0.35 10, 23, 30, 40, 50, 60

22 MH – – 0.45 10, 23, 30, 40, 50, 60

23 MH – – 0.55 10, 23, 30, 40, 50
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temperature at which the tests were conducted) greatly

influences the heat of hydration, where a higher curing

temperature increases both the rate of heat release and

the ultimate heat value [31]. Finding heat of hydration

curves using isothermal calorimetry at different tem-

peratures is necessary for understanding the effect of

evolving internal temperatures—expected in massive

elements—on the subsequent in-situ rate of heat

release [4]. Curing temperatures are provided in �C.
The water to solids ratio and fineness of the cement

also accelerate the rate of heat release and increase the

cumulative heat of hydration with time [31]. For the

cement, the Blaine fineness in m2/kg was included.

The w/s ratio is unitless.

The phase composition of the cement should also be

considered. Hydration kinetics in the first few days are

mainly driven by the C3S and C3A contents. C3S, for

instance, is known to significantly affect the rate atwhich

heat is released [32]. Similarly, the chemical composi-

tion of cement was found to affect early age hydration.A

higher equivalent alkali content accelerates early age

hydration and reduces the induction period [33], and a

higher SO3 content accelerates the C3S reaction, which

increases the rate of heat release [34]. The phases of the

cement and the chemical oxides were included as

features as mass percent of the cement content.

Additional features include the contents and char-

acteristics of the SCMs and the fillers used. Because it

is used as a diluent for cement, fly ash (FA) retards

hydration in both the induction and acceleration

periods [35], and the impact was found to be affected

by the fly ash substitution ratio and its lime (CaO)

content [12]. The slag content, similarly, retards the

rate of heat release and reduces the cumulative heat of

hydration [36]. Cement substitution by limestone (LS)

accelerates cement hydration and increases cumula-

tive heat if the substitution ratio is less than 10% [37].

Moreover, a larger specific surface area of the

materials results in a short induction period and a

higher rate of acceleration [38]. Therefore, seven

features which include the percent content of the

materials, their specific surface areas in kg/m2, and the

fly ash CaO content were added.

One final feature; a rate factor, is used to depict the

temperature sensitivity of the hydration reaction [39],

which is the Arrhenius calculation for every test entry

normalized with respect to the Arrhenius calculation at

a reference temperature, as follows:

Rate factor ¼
exp � Ea

R:T

� �
exp � Ea

R:T ref

� � ð2Þ

where Ea is the apparent activation energy of the paste

in J/mol, R is the gas constant and equals

8.314 J/mol.K, T is the temperature in Kelvin, and

T ref is the reference temperature in Kelvin equivalent

to 23�C [40]. Equation (2) requires a calculation of the

activation energy, which in this study was either found

using the single linear approximation method [41] for

the group of data where tests at different isothermal

temperatures are available or approximated using

regression models [42] when the paste was only tested

at a single temperature.

Thedataset is preprocessed to account for anymissing

values, which were encountered for the equivalent alkali

content of three cements and the specific surface area

(SSA)offiveSCMs;more specifically, four fly ashes and

one slag. Since values were missing at random, regres-

sion imputation was used to fit statistical models to the

variables with the missing data [43]. Data imputation is

performed since the dataset is relatively small, and

therefore it is preferred over leaving out incomplete data.

Pearson’s correlation was first performed to determine

the correlation between the different variables. It was

determined that the equivalent alkali content had good

correlation with cement’s composition phases (C3S,

C2S, C3A, and C4AF), in addition to the MgO and SO3

contents. TheR2 value of the analysiswas 0.69.The SSA

of fly ash was correlated with the maximum value for

heat of hydration, the fly ash content, and the fly ashCaO

content, with an R2 value of 0.95. The SSA of slag was

correlatedwith themaximumvalue for heat of hydration

and the slag content, with an R2 value of 0.89. The

smaller R2 value could be due to lack of information on

compositional content for slag. However, the value is

still considered satisfactory for the purposes of thiswork.

In the condition where different variable values were

determined for the samematerial, the average value was

taken. The total count of input features is 16. The

statistical distribution of features of the individual data

sources is summarized in Table 2.

2.2.2 Gaussian process regression

GPR is a supervised, non-parametric, probabilistic

algorithm that defines a distribution over functions

given certain data. Some of the advantages of GPR
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include the generalizability of the model for datasets

that are not large, and the uncertainty estimates it

provides for its predictions. The approach is based on

defining a prior over functions and translating it into a

posterior over functions after observations are intro-

duced into the training process. The fact that the

performed predictions are probabilistic is advanta-

geous since GPR is able to compute a confidence

interval for the response. The approach is also kernel-

based, which enables it to handle nonlinear data, as is

the case with the heat of hydration histories, with great

efficiency.

For a training dataset D ¼ xi; yif g; i ¼ 1; . . .; n, it

can be defined that x 2 Rdxn is the input belonging to a

d-dimensional vector space Rdxn, and y 2 Rn is the

output belonging to a one-dimensional vector space

Rn. n is the number of data points. Using GPR, the

output y can be calculated as:

y ¼ f xð Þ þ e ð3Þ

The error e follows a normal distribution with a

mean value of zero and a variance of r2, such that

e�Nð0; r2nÞ 2 Rn. The distribution of y is assumed to

be jointly Gaussian in GPR, which is a satisfactory

assumption for many applications and has a mean

vector lðxÞ and a covariance matrix
P

ðxÞ. The

covariance matrix is a function of a kernel jð Þ which
determines the similarity between adjacent observa-

tions and the information they provide about each

other. It is expected that training observations with

similar input vectors will have a similar response.

Likewise, similar testing and observed training sam-

ples will have similar responses. The covariance

matrix takes the following form: Rij ¼ j xi; xj
� �

: To

perform predictions, the joint distribution can be

written as follows:

f
f �

� �
�N

l
l�

� �
;

K K�
KT

� K��

� �� �
ð4Þ

where X, f , X� and f � are the training input features

and response and testing input features and response at

a specific instance, respectively. K� is the covariance
matrix for the training and testing dataset and takes the

form of K� ¼ j X�;Xð Þ. Similarly, we find K ¼
j X;Xð Þ and K�� ¼ j X�;X�ð Þ. The posterior can

therefore be expressed as:

p f �jX�;X; fð Þ ¼ N f �jl�;R�ð Þ

l� ¼ l X�ð Þ þ KT
�K

�1 f � l Xð Þð Þ

R� ¼ K�� � KT
�K

�1K� ð5Þ

A suitable kernel function needs to be selected to

perform the training process. The choice of kernel

decides the hyperparameters that one needs to opti-

mize, which is performed using a Bayesian approach,

i.e. maximizing the marginal likelihood. A sample

kernel is the Matérn 5/2 kernel and is given by:

j x; x
0

� �
¼ r2f 1þ

ffiffiffi
5

p
r þ 5

3
r2

� �
exp �5

ffiffi
r

p� �
ð6Þ

r ¼ kx� x
0 k2

l

The hyperparameters in the above equation are r2f
which controls the vertical variation, and the length

scale l which specifies the width of the kernel and

implies variation along feature dimensions in the

modeled function [44]. Terms x and x0 are points in the
dataset. It is possible to specify a different length scale

for different feature dimensions to determine their

relevance by using a product of kernels over the

dimensions. For example, the product of Matérn 5/2

kernels is known as Matérn 5/2—ARD, where ARD is

the automatic relevance determination [45]. Using this

approach, a larger length scale denotes a smaller

variation along that dimension and therefore a less

relevant feature. Examples of other commonly used

kernels are Matérn 3/2—ARD, squared exponential—

ARD and rational quadratic—ARD.

2.2.3 Evaluation of model fit

The performance of the model on the testing dataset

was quantitatively described using three different

statistical measures to allow for a more comprehensive

evaluation. The calculations are the coefficient of

determination (R2), the root mean square error

(RMSE), and the mean absolute error (MAE). The

measures are calculated by comparing predictions ðy0 Þ
and actual measurements ðyÞ through the formulations

shown in Eqs. (7) to (9). y is the average of the actual

measurements in the testing set, and n is the number of

observations.
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R2 ¼ 1�
P

i yi � y0i
� �2

P
i yi � yið Þ2

ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

yi � y0ij j2
s

ð8Þ

MAE ¼ 1

n

X
i

yi � y0i
		 		 ð9Þ

2.2.4 GPR model

The collected data was randomly divided into training

and testing sets with an 80/20 split, where each

isothermal calorimetry test was treated as an individ-

ual entry. As mentioned earlier, GPR was selected for

its ability to train on small datasets. Here, the number

of unique data points in the dataset is small. However,

each unique data point is a time series with short time

intervals, which makes up a relatively large number of

data entries. For this reason, the fit and prediction

processes were performed using the Subset of Dataset

(SoD) approximation, where the GPRmodel is applied

to a subset of the entire dataset of size m\n to reduce

computational complexity [46]. Matérn 5/2—ARD

was selected as a suitable kernel function due to its

ability to match physical patterns realistically as a

result of its differentiability [47]. Separate length

scales were used for the predictors using ARD. k-fold

cross-validation with the number of folds taken as 10

was performed during model training to assess the

measure of performance over different unseen training

and testing datasets [48].

It is also important to understand the stability of the

model and how it would be affected by changes in the

training and testing datasets. Resampling using the

bootstrap method was performed to further assess and

validate the performance and robustness of the model

[49]. The method involves dividing the data into

training and testing datasets at random with replace-

ment at a fixed split ratio, and the process is repeated

for a determined number of iterations. The perfor-

mance of the model is evaluated at each iteration.

Here, 250 iterations were performed. The performance

measures were calculated at every iteration, and their

statistical distributions were obtained at the end of the

analysis.

3 Results and discussion

The cumulative heat of hydration of different cemen-

titious pastes at different isothermal temperatures was

predicted using a GPR model. The dataset was

compiled by performing isothermal calorimetry tests

to obtain heat of hydration histories, in addition to

histories collected from the literature. The model was

trained on a randomly selected testing dataset, and the

robustness of the model was evaluated using boot-

strapping. The applicability of the model to real-life

structural elements was validated by upscaling the

predicted heat of hydration curves to compare the

predicted internal temperatures with those measured

from two mid-scale experiments. Finally, the use of

the uncertainty estimates that the model provides as

part of the decision-making process is demonstrated.

3.1 Isothermal calorimetry heat of hydration

curves

Representative heat of hydration curves obtained using

isothermal calorimetry are illustrated in Fig. 1. Figure 1a

shows the effect of w/s on the heat of hydration for a PC

mix, where the effect of w/s (within the range examined

here) on the rate of heat development is minimal during

the first 24 h, and afterward, cumulative heat increases

with increasing water content. Cement fineness has a

more pronounced effect on the heat of hydration, where a

coarser cement releases lower cumulative heat, as shown

in Fig. 1b. Figure 1c demonstrates that cement replace-

ment with SCMs leads to lower heat of hydration release

with time, as well as a slower rate of heat development as

in the case of fly ash, as expected [12, 35].Moreover, low

lime ashes (Class F) experience a lower cumulative heat

at 72 h. Figure 1d compares the effect of different

limestone fineness (40; 25; 3lmÞ on the heat of hydra-

tion at a 20% replacement ratio. The extent of

reduction on heat of hydration is greater with a coarser

limestone [37]. Finally, higher temperatures increase

both the rate of heat release and cumulative heat of

hydration, as shown in Fig. 1e.

3.2 Prediction of heat of hydration

The heat of hydration was predicted using two

approaches: (1) having one model for the entire heat

of hydration curve, and (2) having separate models to

depict different hydration processes. The GPR model
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was trained using the training dataset, and the

prediction accuracy was evaluated using the testing

dataset. First, the heat of hydration was predicted for

72 h, although shorter periods were also considered

based on the experiment details. Tenfold cross-vali-

dation was conducted in order to assess model

performance over unseen data. The average loss of

the validation process was found in terms of the root

mean square error, and is equal to 8.4 J/g. The

standard deviation of the losses is 0.35 J/g. The

model’s hyperparameters were automatically opti-

mized during training using automatic relevance

determination. The log of length scale for all features

is shown in Fig. 2 to demonstrate feature relevance,

which is greater for smaller length scale values. It

should be noted that the feature relevance might

slightly differ based on the randomization of the

training and testing datasets. The figure indicates that

the SSA of fly ash is among the least relevant features.

Figure 3 illustrates heat of hydration prediction fits

and accompanying RMSE for a representative group

of cementitious mixes. The predicted heat of hydration

matches very well with the observed heat of hydration

for all four mixes. All predictions fall within the 95%

confidence interval limit. The confidence interval was

narrowest for the first mix, which was PC and cured at

23 �C, which indicates that the certainty of prediction

is higher for this mix. Performance measures for both

Fig. 1 Factors affecting

cumulative heat of hydration
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the testing and training sets are summarized in Table 3.

It can be observed that some of the predictions in

Fig. 3 are subject to changes in the slope with time,

which is not a true attribute of the heat of hydration

curves. The GPR algorithm is non-parametric, and

therefore some flexibility in predictions is anticipated.

The predictions will be used to find the internal

temperatures of mass concrete elements and the extent

to which prediction errors influence the final results

will be explored in the following section.

It is shown in Table 3 that the RMSE error for the

training dataset is 7.077 J/g in comparison with

15.35 J/g for the testing dataset. The R2 of the testing

set is 97.2%. Figure 4 gives an example of the

distribution of residuals for all mixes in the testing

dataset and how it progresses with time. As

Fig. 2 Log of length scales of features, where a shorter length scale corresponds to greater relevance. FA and LS refer to fly ash and

limestone, respectively

Fig. 3 Representative

examples of heat of

hydration prediction using

GPR. PC is Portland cement,

FF is Class F fly ash

   45 Page 10 of 19 Materials and Structures           (2023) 56:45 



demonstrated in the figure, the majority of the mixes

have similar residuals, which are concentrated around

zero. A few mixes containing high-lime fly ash (Class

C) are showing slight deviations, which is a result of

the random selection of the training and testing

datasets. This could also indicate that more data

points are needed for the better prediction of cemen-

titious systems with SCMs. It can also be observed that

the fluctuation of residuals does not change signifi-

cantly with time. For the majority of the mixes, the

accuracy of prediction was found to be slightly lower

in the first 10 h and was relatively stable for the

remainder of the period.

As stated earlier, the rate of hydration curve can be

divided into three phases: up to the end of the

induction period (approximately\ 3 h), the main

hydration peak (approximately between 3 and 24 h),

and after the hydration peak (approximately[ 24 h)

[7]. It is possible to predict the behavior of each of the

phases separately, which can be useful in determining

where the largest errors reside, and how features

influence the behavior of each of the phases. Next, the

results obtained by dividing the rate of hydration curve

into two segments are demonstrated. The input

features were kept the same for both models. The first

model, which trains the heat of hydration data up to

24 h, has training and testing R2 values of 0.99 and

0.97, respectively. The second model, which trains the

heat of hydration data after 24 h, has training and

testing R2 values of 0.99 and 0.95, respectively.

Residual development with time is shown in Fig. 5 for

both models.

It can be seen from the figure that most residuals are

very close to zero when the first 24 h are considered.

After the first 24 h, most residuals fall within�20J=g,

and the distribution is similar over time. A few mixes

Table 3 Evaluation

measures of GPR fit
Criteria R2 RMSE (J/g) MAE (J/g)

With 10-fold cross validation

Training 0.993 7.077 3.509

Testing 0.972 15.35 10.48

After bootstrapping

Mean 0.974 14.05 9.752

Standard deviation 0.005 1.418 0.781

Maximum 0.984 18.98 12.11

Minimum 0.952 10.91 7.881

Fig. 4 Distribution of model residuals with time
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have greater residuals for both models. The results

correspond to those obtained earlier in Fig. 4 where

the hydration curve was treated in entirety. Length

scales for the features of both models are also shown in

Fig. 5 to demonstrate feature relevance. The SSA of

fly ash and slag are among the least relevant features.

Here, it is shown that despite some differences in

feature importance and prediction accuracy for both

hydration phases, the results do not deviate much from

when one model for the entire 72 h is considered, and

deviations can be overlooked for the application of

interest in this work, which is the thermal modeling of

mass concrete structures.

3.3 Evaluating model stability using

bootstrapping

The bootstrap method was used to evaluate the

stability of the model by resampling the dataset. Here,

250 iterations were performed where the training and

testing datasets were selected at random at an 80/20

split ratio. The statistical distributions of the

evaluation metrics R2, RMSE, and MAE from all

iterations are shown in Table 3 for the testing dataset.

The average performance criteria values are 0.974,

14.05 J/g and 9.752 J/g for R2, RMSE, and MAE,

respectively. The average values demonstrate that the

model is able to predict heat of hydration time

histories with good accuracy. The standard deviation

values further show the stability of the results.

Figure 6 illustrates the statistical distribution using

histograms of the performance metrics obtained from

the 250 iterations of bootstrapping. The bin width of

each histogram was determined using the Freedman-

Diaconis rule [50]. It can be concluded from the

histograms that the model is stable and robust with the

majority of R2 values greater than 95%. The MAE

outcomes are concentrated between around 7.8 J/g

and 12 J/g, whereas the RMSE values demonstrate a

wider variability. This is expected due to the greater

sensitivity of the RMSE method to severe outliers

[51]. Overall, the majority of the iterations give

satisfactory results.

Fig. 5 Distribution of model residuals with time (left) and feature relevance (right) for heat of hydration modeling a up to 24 h and

b later than 24 h. FA and LS refer to fly ash and limestone, respectively
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3.4 Validation with experimental data: adiabatic

temperature-rise in mass concrete

This section demonstrates how the developed GPR

predictions can be used to predict the internal temper-

atures of massive concrete structures, which can

eventually be used to formulate thermal control plans.

The process is illustrated in Fig. 7. Here, the GPR

model was used to find the heat of hydration curves

required for thermal modeling of two mass concrete

mid-scale experiments (MSE1 andMSE2) constructed

using instrumented concretes [5]. The experiments

involved reinforced concrete prisms with dimensions

of 1:21� 1:21� 1:83m. For the first experiment

(MSE1), a PC concrete mix was used with a water/

cement ratio of 0.444. The relevant characteristics of

the ASTM C150 PC are shown in Table 4. Construc-

tion took place during January in Atlanta, Georgia,

USA, and the concrete placement temperature was

13.3 �C. Internal temperature data collection was

conducted using thirteen sensors designated with

letters L, S and T, situated as shown in Fig. 8.

The second experiment (MSE2) involved a PC

concrete mix with 25% Class F fly ash replacement.

The water/binder ratio was 0.444. The relevant

characteristics of the ASTM C618 fly ash are shown in

Table 4. Construction took place duringMay inAtlanta,

Georgia, USA, and the concrete placement temperature

was 22.2 �C.The secondmid-scale experiment involved

an embedded cooling pipe system used as an active

thermal control measure [52]. Four open circuit cooling

loops using 3/8‘‘ PEX cooling pipes, which have an

outside diameter of 12.7 mm and an inside diameter of

9.1 mm, were used. Cooling lasted between hours 14

and 22 after concrete placement. The cooling water

temperature inside the pipes was 13.3 �C flowing at 0.4

m3/hr. Internal temperature data collection was con-

ducted using eight temperature sensors designated with

the letters TS, placed as shown in Fig. 8.

Isothermal calorimetry tests were conducted for

both mixture designs at 23, 30, 40, 50 and 60 �C curing

temperatures to serve as comparison to the GPRmodel

predictions [5]. For the machine learning model, two

additional data points were created, which contain

information on the chemical and physical character-

istics of the materials in MSE1 and MSE2. The

database collected from isothermal calorimetry tests

and the literature was used for training the model.

Predictions were performed using the GPR model to

Fig. 6 Histograms showing the distribution of performance metrics obtained from bootstrapping iterations
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find the corresponding cumulative heat of hydration

for both cementitious pastes at different isothermal

temperatures. Figure 9 shows how the GPR model

predictions compare to observed data using isothermal

calorimetry. The RMSE for the training dataset was

found to be 12 J/g, in comparison to 29.9 J/g and

21.1 J/g for MSE1 and MSE2 data, respectively.

Similarly, the training dataset had an R2 value of 0.98,

compared to 0.92 and 0.95 for the data of MSE1 and

MSE2, respectively.

The results show that the model accurately predicts

the magnitude of the heat of hydration, whereas it is

underperforming when it comes to predicting the early

rate of heat release. The mixture designs of both

prisms included quantities of ASTM C494 high-range

water-reducing admixture (PCHRWR) and ASTM

C494 Type B&D low-range water-reducing/retarding

admixture (WRRET), which are expected to increase

the induction period and the rate of heat release [13].

Since the GPR model does not include features on

admixtures, their effect on the heat of hydration

development was not considered, which may have

caused the deviation at times earlier than 12 h.

To predict the internal temperature rise of the

concrete prisms, the heat of hydration curves predicted

at the various temperatures using GPR was used to find

the adiabatic temperature rise of themixture designs and

the corresponding in-situ heat of hydration of concrete.

The procedure is explained in the literature [4, 5, 53].

The concrete’s heat of hydration was then used in the

finite element software b4cast [54] to find internal

temperatures at all sensor locations. Figure 10 shows

the internal temperature histories found using results

from the machine learning model and compares them

with measured temperatures. The comparison is con-

ducted for sensors T4 and TS2 for MSE1 and MSE2,

respectively. Sensor locations are illustrated in Fig. 8.

Figure 10 shows that the predicted heat of hydration

curveswas able to simulate the internal temperatures of

the mid-scale experiment with good accuracy. For

MSE1, results tend to be on the conservative side in

comparison to the sensor data with a 4.7% error in the

maximum temperature prediction. In contrast, the

maximum temperature for MSE2 is underpredicted,

with an error of 5.3%. The shape of the temperature rise

Fig. 7 Diagram of the machine learning-based mass concrete modeling process

Table 4 Chemical and physical characteristics of the materials

of the mid-scale experiment

PC Class F fly ash

Oxide analysis—mass %

MgO 1.70 –

SO3 3.30 –

Na2Oeq 0.48 –

CaO – 6.99

Phase composition—mass %

C3S 59

C2S 12 –

C3A 7 –

C4AF 10 –

Fineness (m2/kg)

SSA – 338.9

Blaine 391 –
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is well-depicted for both experiments, with some

deviation in the early rate of heat release due to the

uncaptured effect of admixtures.

3.5 Decision-making using uncertainty estimates

In previous attempts, random forest was used to find

the heat of hydration of cementitious systems con-

taining metakaolin and limestone with model

performance similar to what is reported in Table 3

[11], though the previous model was trained on

cementitious pastes of high heat of hydration, which

are not suitable for use in mass concrete. Moreover,

only room-level curing temperatures were considered,

which is not representative of mass concrete cores.

One additional advantage of using GPR is that it

provides uncertainty estimates for the prediction,

which is useful for decision-making scenarios. Here,

Fig. 8 Mid-scale experiments. All dimensions are in cm

Fig. 9 Heat of hydration curves at different temperatures using isothermal calorimetry (observed) versus GPR model (predicted) for

cementitious pastes used in MSE1 a and MSE2 b concretes
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a 95% confidence interval was obtained for each

cumulative heat of hydration prediction, as previously

shown in Fig. 3. The upper and lower confidence

limits in the heat of hydration for any cementitious

system and at various curing temperatures can be used

to find the adiabatic temperature rise and correspond-

ing in-situ heat of hydration, which enables the

simulation of an upper and lower limit of possible

internal temperature rises in the mass concrete

element.

Figure 11 illustrates the uncertainty interval for the

internal temperature rise calculated for the second

mid-scale experiment. It can be concluded that the

model provides more confidence in the predictions and

that the maximum temperature is better captured in

comparison to the history in Fig. 10, which was

calculated using the mean heat of hydration predic-

tion. Deviation from the internal temperatures is still

observed after around 24 h, which can be attributed to

the difference between the in-situ and predicted

boundary condition properties (i.e. formwork and

insulation) necessary for the finite element simulation,

but the overall shape of the predicted curves matches

the measured one well.

3.6 Comparison to empirical and kinetic models

Physics or chemistry-based models for the heat of

hydration could be preferred for some applications.

Such models were considered at the onset of this

investigation but were deemed inappropriate for

scaling up to mass concrete use. For empirical and

kinetic semi-empirical models, capturing the nonlin-

ear relationship between the chemical and physical

characteristics of cementitious blends and the heat of

hydration property is currently not feasible, especially

with the incorporation of SCMs, fillers and admix-

tures, which adds a level of complexity to predictions.

Semi-empirical kinetic models which depict the rate of

heat release considering the several unique phases of

the hydration reaction (initial phase, induction phase,

acceleration phase, and deceleration phase) are avail-

able. Simple kinetic models, such as diffusion-based

models, attempt to depict the heat of the hydration

curve in its entirety based on assumptions to reduce the

complexity of the reactions [10]. These semi-empir-

ical models do not agree with general theoretical

principles [7] and rely heavily on mathematical fitting

of each dataset to explain the effects of the different

cementitious characteristics, which limits their gener-

alizability and predictive capabilities. Many other

approaches have also been theoretically refuted,

including nucleation and growth models and confined

growth models. All of these models use a certain

degree of fitting while relying on visual trial and error

Fig. 10 Measured versus predicted temperature histories of MSE1 at T4 and MSE2 at TS2

Fig. 11 Uncertainty interval of MSE2 predicted internal

temperatures
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model evaluation instead of more rigorous optimiza-

tion techniques based on training, testing, and valida-

tion [55]. It should also be recalled that heat of

hydration predictions of blended systems is currently

too complicated using semi-empirical kinetic models,

which might not be appropriate for mass concrete

simulations.

Alternatively, empirical models which rely on the

physical and chemical characteristics of cementitious

systems to depict the shape of hydration can be used.

One such example is the three-parameter exponential

model, which relies on an exponential formulation for

the cumulative heat of hydration [12]. The model,

however, is not able to describe the shape of more

complicated blended cementitious systems [14].

The challenges experienced with empirical and

kinetic models can be overcome with the use of

machine learning, which has proven to offer a

practical approach for the heat of hydration prediction.

The utility of machine learning approaches was

demonstrated here with GPR, which was able to

capture the nonlinear nature of the time and temper-

ature-dependent heat of hydration of cementitious

systems. The high-fidelity predictions demonstrate the

ability of machine learning models to consider the

complex relationship between composition and prop-

erty while also including the correlations and interac-

tions between different composition variables.

4 Conclusions

Accurate prediction of the heat of hydration of

cementitious mixes is necessary to determine many

of concrete’s mechanical and thermal properties. In

mass concrete, the heat of hydration curves at different

temperatures are required to find the adiabatic tem-

perature rise of a specific concrete. There is a need in

the literature for unified models that are able to capture

the heat of hydration of more complex systems, which

include supplementary cementitious materials and

fillers. For this reason, artificial intelligence machine

learning offers a data-driven technique that enables the

prediction of the heat of hydration by training on

information related to the chemical and physical

characteristics of the cementitious materials used,

curing temperatures, and mix designs. Here, Gaussian

process regression was utilized to model and predict

heat of hydration for 407 PC and blended cementitious

systems.

Heat of hydration histories were predicted up to 72 h

at different isothermal temperatures using GPR. The

results were demonstrated for cementitious mixes

containing fly ash, blast furnace slag, and limestone at

different replacement ratios and different characteris-

tics. During training, model performance was assessed

using tenfold cross-validation, and model stability was

demonstrated using the bootstrap resampling method.

The results have proven the ability of the GPRmodel to

perform the predictions with good accuracy. The

average R2 from all the bootstrapping iterations is

around 97.4%. The model was also used to predict the

heat of hydration curves for cement from twomid-scale

mass concrete experiments, which were subsequently

used in finite element modeling to simulate internal

concrete temperatures. The ability to use the predictions

of the machine learning model and upscale them for

application in real-life engineering anddecision-making

systems has been proven. Themodel can be expanded in

future work to include more variations and combina-

tions of SCMs, include admixtures, and improve the

quality of compositional data for SCMs.
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