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Impacts of varying network parameters on the vulnerability and resilience of 
interdependent critical infrastructure systems
Cynthia Lee a and Iris Tienb

aDepartment of Civil Engineering, Albert Nerken School of Engineering, the Cooper Union for the Advancement of Science and Art, New York, 
NY, USA; bSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
Critical infrastructure systems are complex and subjected to evolving risks and hazards, which makes 
anticipating their behavior difficult. To prioritize among actions that increase system resilience, it is 
critical to understand their impacts on parameters defining a network and on anticipated network 
performance. In this paper, the authors investigate the impacts of variations in three parameters on 
network vulnerability: component vulnerabilities, service interdependency redundancies, and system 
link configuration. The advances of this work compared to prior studies include: 1) The impacts of 
parameters varied across a range of values at the component level are evaluated considering 
component functionality and connectivity; 2) quantitative analyses of component performance as 
parameters vary are investigated based on system redundancies; and 3) probabilistic system inter
dependencies are analyzed through a Bayesian network that considers component pathways. Results 
quantify effects of changes in component vulnerabilities and dependencies and are used to discuss 
impacts on system resilience.
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1. Introduction

Critical infrastructure systems (CIS) are the lifelines of 
modern society, providing services and resources such 
as transportation, communication, water, and power to 
communities for daily functions. Protecting these sys
tems and increasing their resilience are necessary to 
ensure public health and safety, societal efficiency, and 
economic growth. As the built and natural environ
ments change, including through continued develop
ment and rising threats of natural disasters and 
climate change, it becomes increasingly important to 
understand the performance of CIS under a range of 
network conditions and variations. Exploring the 
impacts of these conditions on system vulnerability 
enables the evaluation and prioritization of various 
actions that owners and operators can take to repair, 
retrofit, or build out new parts of an infrastructure net
work to increase performance, and ultimately resilience.

In this work, the authors investigate the effects of 
varying three network parameters on CIS performance: 
component vulnerabilities (i.e., conditional probabilities 
of component failure given hazard occurrence), service 
interdependency redundancies, and system link config
uration. The focus of this work is on quantifying 
changes in performance across an entire network as 
changes are made to its component-level parameters, 

rather than on quantifying baseline risks from a specific 
hazard. The authors choose these three parameters for 
evaluation because they correspond to potential actions 
CIS owners and operators can make to an infrastructure 
network, accounting for the effects from both hazard 
events and decisions made to alter the system. For 
instance, component vulnerability can increase after 
a hazard event, leading to retrofit decisions, or 
a network’s layout can be altered if decisions are made 
to build out new parts of the system.

The authors use component marginal probabilities of 
failure and relative changes in those probabilities across 
the entire network as parameters change to quantify 
component performance. These component marginal 
probabilities of failure are discussed as an indication of 
overall system performance through network connec
tivity and supply and path redundancies. Network-level 
effects are quantified by computing populations 
impacted by component outages. To obtain each of 
these probabilistic outcomes, the authors use 
a network modeling framework that includes dependen
cies between components within a CIS and interdepen
dencies across multiple CIS. Specifically, a series of 
inferences is conducted over a Bayesian network 
model of interdependent CIS (Johansen & Tien, 2018) 
with changes in each network parameter.
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The water distribution system in Atlanta, Georgia, 
with its interdependencies between power and transpor
tation networks is used as an example application to 
draw general conclusions. The results quantify the 
effects of changes in component vulnerabilities, redun
dancies, and dependencies and are used to discuss 
impacts on the overall system’s performance and resi
lience. As the network parameters are varied over 
a range of possible values, the results and trends 
observed are applicable to general interdependent CIS. 
This is confirmed by running a set of inferences over 
a different example network – the water distribution 
system in Shelby County, Tennessee – for varied com
ponent vulnerabilities.

The novelty of this work is in the quantification of the 
impacts of variations in different component- and net
work-level parameters on system vulnerability, includ
ing component functionality, network layout and 
connectivity, and system-level cascading effects. The 
focus on the parameters of component probabilities of 
failure, supply redundancies, and system link configura
tion is relevant in decision-making for a real-world CIS. 
Outcomes from the analyses are used to compare system 
states under changing conditions, such as damages 
occurring during a disaster event or preventive mea
sures taken to increase resilience.

In addition to evaluating components based on 
their individual vulnerabilities to different hazards 
such as storms and age, it is important to evaluate 
them based on their redundancies and dependencies 
within the system. The holistic views of system beha
vior and performance provided in this study through 
component vulnerabilities allow infrastructure own
ers and municipalities to make decisions with con
sideration to overall system resilience and the 
system’s impact on the communities and populations 
it serves. The results in this study also provide per
spective on each component’s role in the system, 
which is essential to understand to improve all facets 
of system resilience, from vulnerability and absorp
tive capacity to recovery.

Compared to previous works, the Bayesian network- 
based analyses performed in this study consider the 
effects of probabilistic dependencies between multiple 
infrastructure systems and between the multiple paths 
from supplies to different distribution components 
within a single network. In addition, performance is 
evaluated at the individual distribution component 
level with results used to draw conclusions about 
impacts across the network, enabling a granular assess
ment and comparison of parameter variation impacts 
based on component redundancies and network 
connectivity.

The remainder of this paper is organized as follows: 
First, the authors discuss CIS parameters and the need 
to better understand CIS performance with uncertain 
parameters and various actions and decisions to 
increase resilience. Next, the authors describe the 
Bayesian network modeling approach used to conduct 
inferences and compute component states in this study. 
The authors describe the network used for analysis and 
corresponding model input parameters. The three net
work parameters varied for this investigation are then 
defined, as well as the component characteristics used to 
evaluate the impacts of varying those parameters on 
network performance. Next, the changes are implemen
ted for each parameter, and results are given of their 
corresponding impacts on both component and system 
vulnerabilities. The analysis methodology, findings, and 
detailed discussion about the resulting comparative 
impacts of varying parameter changes are provided. 
The authors then apply the methodology of evaluation 
to a second network to further support their findings 
and discuss generalizability and implications of the 
results for improving CIS resilience. Finally, the authors 
summarize their findings and contributions in the con
clusion section.

2. Background and related work

2.1. Related work in critical infrastructure system 
resilience assessments

Increasing CIS resilience is a global challenge (Amin,  
2002), with infrastructure performance recognized as 
a critical contributor to overall community resilience 
(Johansen et al., 2016). There are many facets of CIS 
resilience, especially when considering interdependen
cies across systems. These facets include but are not 
limited to infrastructure component- or system-level 
vulnerability, adaptive capacity, and ability to recover 
after a crisis. Increasing overall CIS resilience requires 
consideration of combinations of these different dimen
sions of resilience, as well as consideration of existing 
resilience and decision-making policies (Labaka et al.,  
2016). In this paper, the authors focus specifically on 
evaluating CIS vulnerabilities at the component level to 
draw conclusions about overall system vulnerability and 
prioritization in decision-making for increasing CIS 
preparedness and resilience.

Because increasing CIS resilience covers a broad 
scope, evaluating CIS resilience and the impacts of 
actions and decisions that affect these systems is equally 
challenging and complex. There is no universally 
accepted method for the resilience assessment of infra
structure systems. Instead, a large body of work exists in 
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this area with models for different hazard scenarios, 
granularities (i.e., component- versus system-levels), 
types of infrastructure systems, and geographic envir
onments (Liu & Song, 2020). Several of these studies 
consider interdependencies between CIS in the assess
ment. For example, Poljansek et al. (2012) investigate 
the role of system dependencies and interdependencies 
on infrastructure risk and resilience under a specific 
hazard type (e.g., seismic risk assessments). Guidotti 
et al. (2016) also model CIS resilience by including the 
role of system dependencies but do not provide analysis 
results that show how resilience is impacted across 
a range of system inputs. Other studies, such as Attoh- 
Okine et al. (2009), evaluate resilience for a specific type 
of infrastructure or a specific system or network. 
Another type of resilience analysis focuses on a specific 
subset or aspect of resilience, such as Pant et al. (2014), 
which evaluates the economic resilience of interdepen
dent infrastructures, and Danziger and Barabási (2022), 
which provides resilience assessments of recovery cou
pling between interdependent networks.

Compared to these studies, this work focuses on 
quantifying and evaluating the impacts of varying net
work parameters on CIS performance, rather than pro
viding a new methodology or framework for modeling 
interdependent networks or assessing resilience under 
specific conditions. To increase CIS resilience, munici
palities and policymakers may make decisions and take 
actions on how and where to rebuild after a disaster 
event and on how to adapt for future events (Albright & 
Crow, 2021). These decisions and policies can alter 
community planning and operations or physical aspects 
of critical infrastructures, as in retrofits and new con
struction, and often decisions must be made under 
uncertainties in infrastructure system parameters and 
conditions. It is important to understand how the con
sequences of decisions and policies will be impacted by 
such uncertainties. Casal-Campus et al. (2018) use 
a regret-based approach to assess strategies for improv
ing capacities of an urban drainage system, with assess
ments focused on robustness for sustainability, 
reliability, and resilience. Zhang and Alipour (2020) 
analyze the effects of pre- and post-event maintenance 
actions on a bridge network to find the optimal social- 
economic outcome for different construction and dis
ruption scenarios, considering costs.

In this paper, the authors consider uncertainties in 
CIS parameters through a probabilistic Bayesian net
work modeling framework, described in more detail 
later in this paper. Compared to prior work, the analysis 
in this study is not focused on optimizing system per
formance or comparing specific resilience actions and 
strategies, but rather on evaluating performance across 

a range of conditions and parameter values, particularly 
at the component level with impacts at both component 
and system levels.

The analysis in this study is also not focused on 
a specific infrastructure type. There are several models 
available that do not focus on a specific infrastructure or 
hazard type, including Sharma and Gardoni (2022), 
Blagojević et al. (2022), and Liu et al. (2021). As in 
Applegate and Tien (2019), these models are able to 
conduct resilience assessments of interdependent CIS 
by defining component-level parameters and network 
connectivity. The authors select the Bayesian network 
model by Applegate and Tien (2019) because it also does 
not focus on a single infrastructure or hazard, it speci
fically outputs marginal probabilities of failure, it takes 
in inputs related to network supply redundancies and 
conditional probabilities of failure that do not need to be 
specifically calibrated, and it updates component-level 
outcomes considering explicit probabilistic relation
ships among the elements of a CIS.

2.1. Related work in evaluating critical 
infrastructure network parameters

CIS have a wide range of network topologies and com
ponent parameters depending on the types of infra
structure, surrounding environments, and 
communities they serve. Both system- and component- 
level network parameters affect CIS behaviors and 
resulting resilience. System-level parameters including 
connectivity between components and system redun
dancies, while component-level parameters include 
component capacities and probabilities of failure. In 
this study, both component- and system-level para
meters are assessed. Previous studies that investigate 
the relationship between network parameters and resi
lience include Zhang et al. (2015), which assesses the 
effect of system topology measures on the resilience of 
transportation networks. The results from that study 
provide insights on the types of topologies that may be 
more resilient. Genge et al. (2012) focuses on commu
nication and control logic implementation parameters 
that influence the outcome of attacks on industrial con
trol systems. The study connects communication and 
control systems to look at the impact of network para
meters on the effectiveness of potential cyberattacks. 
Ouyang et al. (2012) quantify the impacts of improve
ments at different stages of resilience, investigating the 
effect of varying the order of resilience actions and 
strategies. Panteli and Pierluigi (2017) evaluate the resi
lience of an electrical power system to extreme weather 
events, including analysis of impacts of varying both 
component- and system-level parameters, such as by 
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including more robust lines and towers or adding par
allel lines (i.e., changing network configuration and 
component capacities). Other studies that evaluate the 
importance of component-level parameters including 
Barker et al. (2013), Espinoza et al. (2020), Xu et al. 
(2020), and Barker et al. (2013) present component 
importance measures that describe the adverse and 
positive impacts of component performance on overall 
system resilience. Espinoza et al. (2020) and Xu et al. 
(2020) similarly present component important mea
sures for interdependent networks, ultimately ranking 
components by criticality in an overall CIS.

In contrast, the work presented in this study evalu
ates the impact of component-level parameters on over
all system performance through component 
vulnerabilities, network redundancies, and supply to 
distribution path dependencies. In this study, the 
authors look at CIS broadly and evaluate the impacts 
of changes in varying network parameters on the per
formance of CIS components across a network. The 
work focuses on CIS performance across a range of 
parameter values through analyses that are applicable 
to general infrastructure and hazard types, i.e., not 
focused on a specific infrastructure type or hazard.

This study also takes a comprehensive approach to 
CIS analysis, assessing quantified results at the compo
nent level and their impacts across all components in 
the system in order to discuss impacts on resilience. It 
includes uncertainties and system dependencies and 
interdependencies in the analysis, rather than present
ing new component performance measures. The result
ing probabilistic component outcomes in this study are 
evaluated and compared based on their component 
characteristics, including functionality, connectivity 
within the overall network, and the various redundan
cies available to them. The results enable future perfor
mance-based designs and decisions that more effectively 
prioritize system components for repair, maintenance, 
construction, and other actions based on anticipated 
outcomes in increasing infrastructure resilience.

2.2. Bayesian network modeling framework used 
for analysis

Among the quantified measures assessing network per
formance outcomes under varying scenarios in this 
study are marginal probabilities of failure, providing 
quantitative indicators at the component level, across 
a CIS. Component marginal probabilities of failure in 
this study are computed by conducting inferences over 
a Bayesian network (BN)-based modeling framework 
for interdependent CIS. The framework was developed 
by Applegate and Tien (2019) and is used as a tool for 

analysis for the results and findings presented. Benefits 
of this framework compared to other Bayesian network 
models include the ability to model a main network with 
interdependencies within that network and across other 
connected networks, the facilitation of many successive 
and efficient inferences to obtain probabilistic resilience 
assessments for interdependent CIS and the considera
tion of supply to non-supply component pathways in 
the analyses (Sun et al., 2022; Yu & Baroud, 2020). The 
framework is summarized below and will be referred to 
as the CIS BN for the remainder of this manuscript.

A BN is an acyclic directed graph in which nodes 
represent random variables and edges represent the 
probabilistic dependencies between nodes (Jensen & 
Nielsen, 2007). The nodes and edges of a BN are defined 
by conditional probability distributions, which provide 
node state probabilities conditioned on the states of 
their parents. The dependencies between discrete state 
nodes and corresponding conditional probability distri
butions are represented by conditional probability 
tables (CPTs). In the CIS BN, nodes are the components 
of the CIS itself as well as the components characterizing 
their interdependencies, and edges are probabilistic 
dependencies between components within and across 
systems. Each type of node in the CIS BN is described 
below. Examples of the CPTs used in this study and 
descriptions of how they are varied for the parameters 
investigated in this work are provided in the next two 
sections.

A CIS component in the CIS BN is defined as any 
part of an infrastructure system or its interdependent 
systems to be included in the performance analysis of 
that particular system. For instance, a component can be 
a pump station in a water network or a pipe used for 
distribution. In this case, nodes can be in survived or 
failed states, and the CPT of each component contains 
the probabilities of failure of the component given the 
states of its parents or nodes on which it depends. The 
specific parents of a component in the CIS BN depend 
on how the network is defined. The authors provide 
a description of the networks and resulting model struc
ture used in this study in the subsequent sections.

The CIS BN used in this study distinguishes the 
functionality of two types of components in the main 
network to model the dependencies within it: supply 
components (e.g., water treatment facilities) and distri
bution components (e.g., intermediate pump stations or 
pipelines). Supplies provide the infrastructure resource 
to distribution components through minimum link sets 
(MLSs), which are minimum sets of components that 
must function in order to link a supply to a distribution 
component. An MLS will disconnect if any link is 
removed or not functioning. MLS nodes are defined by 
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paths from a supply to distribution component in the 
main network.

In addition to dependencies defined within a single 
network, the CIS BN also includes three types of inter
dependencies in its probabilistic analyses. These are geo
graphic, service provision, and access for repair 
interdependencies. Each interdependency type is repre
sented by additional nodes in the CIS BN with user- 
specified CPTs. Geographic interdependencies occur 
when components are collocated and subject to the 
same hazard risks. Inputs to represent these interdepen
dencies are component probabilities of failure condi
tioned on a hazard node state (e.g., occurred or not 
occurred) and probabilities of hazard node state within 
that geographic zone. Geographic interdependency (i.e., 
hazard) nodes account for potential correlations between 
component vulnerabilities due to the close proximity of 
components within a geographic area to each other. Each 
geographic interdependency node is a parent node for 
any component impacted at that particular hazard level. 
Component conditional probabilities of failure should 
correspond to the hazard represented by its geographic 
interdependency node parent.

Service provision interdependencies occur when 
a CIS component depends on the outputs of 
a component from another system to operate. Inputs 
are probabilities of failure for each service provision 
component, e.g., a power supply needed for 
a component in the main network to function. Service 
provision components can also have vulnerabilities 
related to the geographic interdependency nodes for 
hazard occurrence, which require input probabilities of 
failure conditioned on their parent geographic interde
pendency, or hazard, nodes.

Access for repair interdependencies occurs when 
a damaged component depends on access from another 
component for repair operations. Access for repair 
interdependencies tracks component states over time 
and occurs in post-disaster response and recovery sce
narios when component damage or failure has been 
identified. Because the need to provide access for repair 
only occurs under component failure scenarios, the 
states of the components are tracked over time with 
the access for repair interdependency relationship 
becoming relevant when the previous state of the com
ponent indicates repair is needed. The inclusion of 
access for repair interdependencies in the CIS BN allows 
for the analysis of recovery efforts and downtimes 
(Johansen & Tien, 2018) and is modeled in the CIS BN 
with access for repair nodes and previous state nodes for 
the dependent component.

With the node connectivity and dependency rela
tionships in the CIS BN, any changes to one component 

in the network will propagate through to update the 
states of all other nodes in the network. This enables 
the CIS BN to capture cascading effects, where failures 
in one part of a network cascade to failures in other 
parts of the network or failure of a component in 
another system cascades to failures of components in 
the main network under consideration. Because of the 
nature of complex and interdependent CIS, it is possible 
for loops in the CIS BN to occur. A loop in the network 
can occur when a distribution component is part of 
multiple MLS nodes, i.e., multiple supply to distribution 
component paths. These are accounted for in the CIS 
BN modeling framework with a cyclic dependency 
removal process as described in Applegate and Tien 
(2019) to ensure that the final Bayesian network is 
a directed acyclic graph. Other algorithms for construct
ing a model using the CIS BN include a network com
pression algorithm for large networks.

All conditional probability distributions used in this 
study are assigned values for general infrastructure and 
hazard types. To compute input conditional probabil
ities of failure calibrated for a specific infrastructure 
component and hazard, a probabilistic damage analysis 
would need to be conducted, which is not within the 
scope of this study. With the nodes defined, exact 
inferences can be conducted over the full model 
using the algorithms as described in Applegate and 
Tien (2019). Outputs of the model are updated mar
ginal probabilities of all node states. The CIS BN mod
eling approach is suitable for the analyses conducted in 
this study to evaluate the impacts of varying network 
parameters on CIS performance because many succes
sive inferences can be conducted over a range of para
meters and parameter values. Furthermore, changes to 
network parameters can be made efficiently, such as 
updating probabilistic dependencies between compo
nents through the CPTs, adding redundancies as new 
nodes in the CIS BN, or altering network layout 
through dependency relationships in the CIS BN. 
Finally, the ability to obtain component-specific out
comes enables the assessment and discussion of net
work performance from the constituent component 
level that this study seeks. To assess the impacts of 
varying network parameters on CIS outcomes in this 
study, inferences are run for each value or change in 
the range of parameter values of interest. The para
meter variations are described in more detail in the 
following sections.

The CIS BN can become very complex as the number 
of nodes in the main CIS of interest and its interdepen
dencies increase. Figure 1 shows an example of a single 
branch of an overall network modeled using the CIS BN 
framework. The schematic shows the connection 
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between a supply in the main network, i.e., Water 
Supply Node, to a distribution component, i.e., Water 
Distribution Node 4. Hazard Node represents the geo
graphic interdependency impacting this branch of the 
main network, and access for repair (via the Access 
Node and Previous State Node) and service (via the 
Power Node) interdependencies are shown impacting 
the Water Supply Node. Other Water Distribution 
Nodes are parents of the Minimum Link Set Node. It 
is possible that the same Water Supply Node will be the 
source for the other water distribution components 
shown, but this schematic is provided to show potential 
dependencies from one supply in the main network to 
one distribution component. Algorithms for inference 
as well as for network compression and to avoid defin
ing cycles in the CIS BN are implemented as provided in 
Applegate and Tien (2019).

3. Example Network for analysis – Atlanta 
water distribution system

To evaluate the impact of network parameter variation 
on overall system performance and vulnerability, the 
authors use Atlanta’s water distribution network as an 
example from which to draw general conclusions. The 
results are generalizable because the CIS BN is consis
tent in parent–child relationships, regardless of the con
figuration of the CIS being analyzed. For instance, 
different system layouts simply have a different number 

of nodes in the Bayesian network. Additional analysis of 
a different network to further examine generalizability 
of findings is provided in a later section.

A simplified graph of Atlanta’s water distribution 
system is presented in Figure 2. Seven major supplies 
are shown, representing water treatment facilities 
throughout the metropolitan area. The remaining 105 
components are designated as distribution components 
in the CIS BN. Exact coordinates for component loca
tions are not shown in Figures 2 and 3 to uphold data 
privacy and security agreements.

Each water supply node (i.e., main network supply) is 
given one unique service (e.g., power supply) parent 
node and one unique access for repair (e.g., 
a roadway) parent node, representing service provision 
and access for repair interdependencies, respectively. 
While it is possible to have one service or access com
ponent that is a parent to multiple components in a CIS, 
the authors choose this method of modeling service and 
access components to reflect typical infrastructure net
work layouts, uniformly model supplies in the network, 
and focus results on impacts from the previously 
defined parameter variations. The authors define all 
nodes in the network with two states. For instance, 
a component node state can either be failed or survived 
and a hazard node can either be occurred or not 
occurred. Tables 1–3 show the CPTs for sample power 
supply, access for repair, and water supply nodes in the 
network, respectively. In this study, the probabilities of 

Figure 1. Simplified schematic of a branch of the CIS BN used for analysis.
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failure of power supply and access for repair nodes each 
vary depending on hazard occurrence. The hazard 
nodes are defined later in this section. Tables 1–3 
show sample values for all conditional probabilities, 
e.g., 1% conditional probability of failure for a power 
supply node when a hazard occurs. These values are 
varied later in this study to investigate the impact of 
varying component-level vulnerabilities on system 
performance.

Water supply nodes depend on power supply, access 
for repair, and previous state nodes, as seen in Figure 1, 
as well as hazard nodes. With more parent nodes, the 
CPT for a node grows exponentially. For the values of 
the CPT ordered as in Tables 1–3, the number of col
umns doubles for each new parent node for binary node 
states, and thus the CPT for a water node will have 16 
columns. Table 3 shows the CPT for a water supply 
node with only hazard and power supply parents to 
limit the table size. The authors choose to show 
a water supply’s CPT with these parents because hazard 
nodes and power supplies are discussed in more detail 
throughout this paper as part of the analyses.

To identify MLS nodes for the CIS BN, the authors 
conduct a depth-first search from each supply compo
nent to every distribution component in the main net
work. Each supply-to-distribution path found 
represents a new MLS node, and components in the 
path are parents to that MLS node. MLS nodes then 
become parents of the last distribution component in 
the MLS path. The number of MLS parents and the 
number of reachable supplies to each distribution com
ponent are recorded for each new network analysis. The 
authors choose a depth-first search to define MLS nodes 
as an efficient algorithm to identify supply-to- 
distribution pathways in the example network. These 
user-defined inputs to the CIS BN can be changed based 
on known pathways in a CIS. A simple example MLS 
node CPT is shown in Table 4. The example MLS has 
two parents: a water supply node, i.e., the source for the 
path, and an intermediary distribution component 
node. The MLS node can only survive if both parents 
survive.

To define hazard nodes, i.e., geographic interdepen
dencies, the authors use a k-nearest neighbor search to 
group components into 11 geographic areas. The states 
of the components within each group are then depen
dent on each other through dependence on the state of 

Figure 2. Schematic of Atlanta’s water distribution system com
prising supply and distribution components.

Figure 3. Distribution of one-supply and multi-supply compo
nents in the Atlanta water distribution network.

Table 1. Sample conditional probability table for a power supply 
node.

Power supply state Hazard occurs Hazard does not occur

Fails 0.01 0.0001
Survives 0.99 0.9999

Table 2. Sample conditional probability table for an access for 
repair node.

Access for repair  
component state Hazard occurs Hazard does not occur

Fails 0.01 0.0001
Survives 0.99 0.9999

Table 3. Sample conditional probability table for a water supply 
node.

Water 
supply state

Hazard occurs Hazard does not occur

Power 
supply fails

Power supply 
survives

Power 
supply fails

Power supply 
Survives

Fails 1.0 0.01 1.0 0.0001
Survives 0 0.99 0 0.9999

990 C. LEE AND I. TIEN



a common hazard parent node. The k-nearest neighbor 
approach is selected as an efficient method for grouping 
nodes into the discrete geographic areas representing 
varying hazard probabilities.

The authors define general initial component prob
abilities of failure conditioned on hazard occurrence for 
the network as 1% for all supply and distribution com
ponents and interdependencies, i.e., hazard occurrence 
probabilities and conditional probabilities of failure for 
power and access nodes. These are not related to any 
specific hazard or type of component failure analysis. The 
purpose of this study is to evaluate the impacts of para
meter variation on component vulnerability and overall 
resilience, including relative comparisons of impacts 
across components, rather than to evaluate the impacts 
of a specific hazard or mode of failure. Conditional prob
abilities of failure calibrated for a specific hazard would 
generate results more representative of a specific event, 
but the initial, uniform component probabilities of failure 
provide a baseline for the analysis and comparison that is 
applicable to general infrastructure and hazard types. 
Table 5 shows the discrete marginal distribution table 
for a hazard node in the CIS BN. Table 6 shows the 
CPT for a sample distribution component in the network 
with only one MLS parent. A distribution component 
survives only if at least one of its MLS parents survives. 
The makeup of this CPT is varied later in this study to 
investigate the impact of varying system link configura
tion on system performance.

4. Network Parameters and Variations

The authors select three parameters to vary across the 
Atlanta water distribution network and conduct infer
ences for each variation to obtain resulting component 
and system impacts. The three parameters are compo
nent-level vulnerability (i.e., conditional probabilities 
of failure given hazard occurrence), service interde
pendency redundancies (i.e., component backups 
across infrastructure types), and system link configura
tion (i.e., possibilities of new builds). Each of these 
parameter variations corresponds to a different input 
of the CIS BN, including the defined conditional prob
ability tables (CPTs), and edges in the network model.

Component-level vulnerability is defined in the 
CIS BN by component conditional probabilities of 
failure given hazard occurrence and is varied in the 
CIS BN through the defined CPTs. Component vul
nerability is conditioned on a general hazard in this 
analysis. The probability of hazard occurrence in the 
CIS BN is set as 1% for a general hazard (see, Table 5) 
rather than based on a single event or type of hazard 
and is left constant in the model for consistency in the 
analysis results. Component conditional probabilities 
of failure are varied from 0.0001 to 0.75, i.e., 0.01% to 
75%. For power supply nodes, this is done by chan
ging the probability of failure conditioned on hazard 
occurrence as shown in Table 1.The authors choose 
this range of vulnerabilities to hazards to represent 
a range of components from those that have been very 
recently retrofitted and thus have low conditional 
probabilities of failure, to those that are significantly 
degraded after an adverse hazard event has occurred 
and have not been subsequently repaired or upgraded 
and thus have higher conditional probabilities of fail
ure to the next hazard event.

To vary service interdependency redundancies, the 
authors introduce additional service nodes to the net
work at each main water supply. This parameter varia
tion represents, for example, additional power backups 
at the water supplies. To evaluate the impacts of this 
action across the full network, the main water supplies 
have a uniform number of service nodes. That is, each 
water supply has the same number of unique service or 
power nodes for each analysis. Lastly, to change system 
link configuration in the CIS BN, new edges (i.e., depen
dencies) are introduced into the main network. This 
variation represents potential new builds in the network 
and is implemented by adding new parents to the MLS 
nodes (see, Table 4). The authors identify each new 
parent–child relationship for the CIS BN by conducting 
a new depth-first search over the main network with the 
new system configuration.

Table 4. Example conditional probability table for an MLS node.

MLS 
node 
state

Water supply fails Water supply survives

Distribution 
component 

fails

Distribution 
component 

survives

Distribution 
component 

fails

Distribution 
component 

survives

Fails 1.0 1.0 1.0 0
Survives 0 0 0 1.0

Table 5. Discrete marginal distribution table for a hazard node in 
the network.

Hazard state Probability of hazard state

Occurred 0.01
Not occurred 0.99

Table 6. Sample conditional probability table for a distribution 
component with one MLS parent.

Hazard occurs Hazard does not occur

Water distribution 
component state

MLS 
parent 

fails
MLS parent 

survives

MLS 
parent 

fails
MLS parent 

survives

Fails 1.0 0.01 1.0 0.0001
Survives 0 0.99 0 0.9999
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To obtain the resulting component-level impacts of 
these variations, the authors run inferences after each para
meter variation and record the new marginal probabilities 
of failure for all components. An inference over a BN is 
conducted by providing input evidence (e.g., a known 
infrastructure component node state of failed or survived 
or state of occurred or not occurred for hazard nodes) into 
the model and computing resulting marginal probabilities 
based on parent–child dependency relationships. Impacts 
are quantified based on relative changes in component 
vulnerability, and results are compared based on different 
network characteristics of system dependencies and system 
redundancies to obtain a holistic view of system perfor
mance. Together, these outcomes are used to quantify the 
impacts of parameter variations on component perfor
mance and evaluate overall system resilience.

Quantified results are the marginal component 
probabilities of failure over the full CIS BN computed 
under each parameter variation scenario. Other out
comes include relative changes in results and sum
mary statistics such as the median values of these 
marginal probabilities of failure over all variations. 
These outcomes differ from the initial input compo
nent conditional probabilities of failure that are var
ied as they are the resulting probabilities of failure 
computed from the connections, i.e., dependencies, in 
the system.

Outcomes are also compared by component attri
butes to investigate the characteristics of components 
with greater or lesser impacts on performance based on 
the network parameter variations to draw conclusions 
about overall system resilience through network con
nectivity and redundancies. These attributes include 
system dependencies and system redundancies. System 
dependencies are described by the number of parents in 
an MLS component and define the number of depen
dencies within and across systems that are required for 
a component to function, which is directly related to 
network connectivity in the CIS BN. System redundan
cies refer to additional supply component nodes (e.g., 
added service interdependency components), as well as 
additional pathways from a supply component to any 
other dependent component in the system, i.e., 
a distribution component. For instance, by introducing 
new links into the network, a new MLS component may 
be added, providing a new redundancy (i.e., path) 
within the system. The following sections provide the 
results and findings from running these analyses for the 
variations of each of the network parameters 
investigated.

5. Component conditional probabilities of 
failure

To investigate the impact of component maintenance and 
retrofit activities, the authors vary the component condi
tional probabilities of failure for supplies in the water net
work and service components (e.g., power supply) at each 
water supply. The authors choose to vary conditional 
probabilities of failure for these components because dis
tribution components in the network all depend on at least 
one water supply and each water supply depends on 
a service component or power supply. In addition, the 
higher value assets of water and power supplies are more 
likely to be the focus of improvement for infrastructure 
owners who have limited funds to invest in retrofit activ
ities for their systems. The inference results of variations in 
water and power supplies are similar, so the authors only 
show the results for varying power supply conditional 
probabilities in this section. For each inference in these 
analyses, no evidence is input, that is, no components in 
the network are observed as either failed or survived and 
no hazard is observed to have occurred or not occurred. 
Therefore, the resulting marginal probabilities of failure 
are all low – less than 1%, even as power component 
conditional probabilities of failure reach 75%.

The authors also conduct analyses varying the prob
abilities of failure for access components, which model 
access for repair interdependencies and is related to 
network recovery. While these nodes impact results 
because inferences are conducted with the inclusion of 
all nodes in the CIS BN, the results from these variations 
were negligible in comparison to the results from vary
ing power supply conditional probabilities of failure. 
This is because no evidence is input for the inferences 
in this section; access components are most impactful 
during analyses when at least one component has failed.

In assessing the results across components of differ
ent characteristics, the resulting marginal probabilities 
of failure across all components show notable differ
ences between components with one reachable supply 
versus components that have multiple reachable sup
plies. Components with multiple reachable supplies 
have almost no change in marginal probabilities across 
inferences as conditional failure probabilities for those 
supplies are varied. Figure 3 shows the distribution of 
one-supply and multi-supply components across the 
Atlanta network with the number of reachable supplies 
for a component determined by MLS nodes. The figure 
shows the same 112 components in the network as in 
Figure 2, with supplies shown in white and one-supply 
components (magenta) distinguished from multi- 
supply components (blue). Components can either be 
one- or multi-supply components, not both. Some 
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components in the network are very close together at 
this scale; therefore, several single- and multi-supply 
components appear to be overlapping.

Showing separate boxplots for the results for one- 
supply compared to multi-supply components, Figure 4 
shows the resulting marginal probabilities of failure 
distribution components as power supply component 
conditional probabilities of failure are varied. The 
authors also compute relative changes in marginal fail
ure probabilities compared to a baseline of results from 
power supply conditional failure probabilities input at 
1%. This reference was chosen to quantify the changes 
in results for individual components as power supply 
CPT inputs vary. This analysis allows for an evaluation 
of how components can be impacted by changes in 
input parameters over time as supply components 
degrade or are upgraded. The results are not affected 
by the baseline chosen to calculate relative changes. To 
facilitate legibility by scaling and comparisons by rela
tive changes in component vulnerability with the para
meter variations, the boxplots in Figures 5 and 6 show 
the relative changes in marginal probabilities of failure 
from the marginal probabilities computed when power 
component conditional probabilities are input as 1% for 
updated power failure probabilities less than (Figure 5) 
and greater than (Figure 6) 1%, respectively. Relative 
changes over 1 indicate a more than 100% increase from 
the baseline. In Figure 5, the dotted line is at zero. Since 
the authors have selected a baseline of results of condi
tional failure probabilities input at 1%, the vertical axis 
in Figure 5 goes below zero (i.e., as input conditional 
probabilities of failure decrease from the baseline, so do 
relative changes in the resulting marginal probabilities 
of failure). This indicates decreasing input conditional 

probabilities of failure that correspond with lower initial 
component vulnerabilities within the system.

Overall, the outcomes in Figures 4–6 show that the 
multi-supply components have very little change as the 
power supply components increase in vulnerability, for 
the entire range of input probabilities given (i.e., 0.01% 
to 75%), while the one-supply components have 
increasing marginal probabilities of failure as the 
power supply components increase in vulnerability. 
That is, components with only one supply are most 
sensitive to variations in the input conditional probabil
ities of failure in the system and that multi-supply com
ponents experience almost no changes due to those 
variations, regardless of number of supplies. This out
come suggests that adding just one path redundancy to 
a different supply for a one-supply distribution compo
nent is enough to significantly decrease that distribution 
component’s vulnerability within the network. The 
addition of links and therefore paths to reach supplies 
is discussed in subsequent sections.

In addition, from Figure 6, the variability in out
comes across distribution components as measured by 
relative changes in marginal failure probabilities with 
the change in power supply component vulnerability 
increases as the power supply component conditional 
probabilities of failure increase. This indicates that not 
only does system vulnerability increase with increased 
supply component conditional failure probabilities but 
so does variability in the anticipated component perfor
mance across the entire network.

To better understand the impact of these compo
nent-level conditional failure probability variations on 
the outcomes for one-supply distribution components 
and specifically the characteristics of components that 

Figure 4. Marginal probabilities of failure for distribution components vs. power supply conditional probabilities of failure.
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are affected differentially across the network under the 
same network parameter variation, the authors evaluate 
the inference results comparing distribution component 
outcomes by two different component characteristics. 
The characteristics are number of paths to a supply (i.e., 
number of MLS parent components in the CIS BN) and 
fewest number of dependencies to the component’s 
supply (i.e., fewest number of constituent parents for 
an MLS parent).

The number of paths to a supply refers to the number 
of redundancies for the distribution component. 
A distribution component can have redundancies in 
both number of reachable supplies and number of 
paths to those reachable supplies. The one-supply com
ponents have no supply redundancies but can have path 
redundancies based on the network’s link configuration 
if it has multiple paths to reach its single supply source. 

Both types of redundancies are described by MLS com
ponents, which are defined in this study by a depth-first 
search.

The fewest number of dependencies to a distribution 
component’s supply indicates the fewest number of 
other components in the network required to survive 
in order for the current component to survive on 
resources from its single supply component source. 
For instance, a distribution component may rely on 
the survival of a full set of pipes and pump stations to 
reach its supply via that path. In the case of Atlanta’s 
water distribution network model in these analyses, 
one-supply water distribution components with more 
dependencies to their single supply represent water 
components that are farther away from any supply in 
terms of physical distance, with more assets needing to 
function in between for functionality at the final 

Figure 5. Relative changes in marginal probabilities from baseline results for power Pf values less than 1%.

Figure 6. Relative changes in marginal probabilities from baseline results for power Pf values greater than 1%.
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distribution component. In the CIS BN, this is equal to 
the number of components in an MLS.

The boxplots in Figures 7 and 8 show the resulting 
marginal probabilities of failure and the relative changes 
in results from the baseline previously described, 
respectively, versus the input conditional probabilities 
of failure varied for all power supplies in the network. 
The color bars represent the number of paths to 
a supply. Figures 9 and 10 show the same results 
where the color bar represents the discrete fewest num
ber of dependencies to a one-supply distribution com
ponent’s supply. The boxplots are generated by 

grouping single-supply components by each character
istic: number of paths and fewest number of dependen
cies to the supply. Then, a boxplot of output marginal 
probabilities of failure is generated for each group, i.e., 
components with one, two, three, etc., paths to a supply 
to show results at each new input conditional probabil
ity of failure from 0.01% to 75%.

In Figures 7–10, inference results from all parameter 
variations are shown on each figure. At each new input 
conditional probability of failure (i.e., 0.01% to 75%) for 
power supply components, distribution components are 
grouped by number of paths to any supply or fewest 

Figure 7. Results for marginal probabilities of failure for one-supply distribution components versus input conditional probabilities of 
failure for power supply components grouped by number of paths to a supply.

Figure 8. Relative changes in marginal probabilities of failure versus input conditional probabilities of failure for power supply 
components grouped by number of paths to a supply.

SUSTAINABLE AND RESILIENT INFRASTRUCTURE 995



number of dependencies to the supply, which are repre
sented by the discrete values on the color bar in each 
figure. For instance, the yellow boxplots in Figures 7 and 
8 show the variation of results for all distribution com
ponents that have eight paths to a supply component as 
input conditional probabilities of failure increase for 
power components. The boxplots only include results 
for one-supply distribution components. Figures 7 and 
9 show that as power supply conditional failure prob
abilities, number of paths to a supply, and fewest num
ber of dependencies to a supply increase, the resulting 
marginal probabilities of failure for distribution compo
nents increase. These figures also show that components 
with more paths to a supply and more dependencies to 
a supply have higher marginal probabilities of failure. 

This is not intuitive for components with more paths 
(i.e., redundancies) to a supply and is a result of exam
ining the impacts of these component characteristics 
(i.e., number of paths to a supply versus fewest number 
of dependencies to a supply and the relationship 
between the two), which the authors explain later in 
this section. Figures 8 and 10 conversely show that as 
the number of paths and fewest number of dependen
cies to a supply increase, the relative changes in resulting 
marginal probabilities decrease.

In other words, as the number of paths and fewest 
number of dependencies to a supply for a component 
increase, the relative impact from changing component 
conditional probabilities of failure at the supply 
decreases. The effect is significant, with a maximum 

Figure 9. Marginal probabilities of failure for one-supply components versus input conditional probabilities of failure for power supply 
components grouped by fewest number of dependencies to the supply.

Figure 10. Relative changes in marginal probabilities of failure versus input conditional probabilities of failure for power supply 
components grouped by fewest number of dependencies to the supply.
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relative change in marginal probability of failure of over 
800% for components with one or two paths to a supply, 
compared to an under 300% maximum change for 
components with eight paths. Similarly, the maximum 
relative change in marginal probability of failure 
decreases from over 800% to under 200% for compo
nents with one or two compared to ten dependencies to 
a supply.

Differences in outcome variability are also observed. 
Figure 8 shows that the variability in results decreases as 
the number of paths increases. For instance, compo
nents with eight paths to a supply have the least varia
bility in relative changes in marginal probabilities 
compared to the components with fewer number of 
paths to a supply. This supports the previous conclusion 
that variability in results decreases as more redundan
cies are available. Figure 10 shows that the variability in 
results decreases as the fewest number of dependencies 
to a supply increases. While dependencies are not the 
same as redundancies, these results show that compo
nents farther away from a supply are less sensitive to 
changes in network parameters.

To better understand the results from Figures 7–10 
and the interaction between the two component char
acteristics of the number of paths and the fewest num
ber of dependencies to supplies on component 
outcomes, results are now analyzed for components 
with a specific number of paths and dependencies. 
Given the results from Figure 4–6, the focus is on dis
tribution components with one supply. Figure 11 shows 
the relationship between the number of dependencies 
versus the number of paths to a supply for all 66 one- 
supply distribution components.

Inference results are then plotted for a single value 
for number of paths and dependencies in Figures 12 and 
13. In Figure 12, the relative changes in marginal prob
abilities versus input conditional probabilities of failure 
for power supplies are shown for components with four 
dependencies to its supply (i.e., y = 4 in Figure 11). In 
Figure 13, the relative changes in marginal probabilities 
versus input conditional probabilities of failure are 
shown for components with two paths to a supply (i.e., 
x = 2 in Figure 11). In Figures 12 and 13, the compo
nents are again grouped by characteristics, i.e., number 
of paths and number of dependencies to a supply, 
respectively, to generate boxplots. The color bar repre
sents these discrete-value characteristics in each figure.

Comparing the results in Figures 12 and 13 shows 
that the number of paths has a smaller effect on the 
relative changes than the fewest number of dependen
cies to a supply. As the fewest number of dependencies 
to a supply increase, the relative changes in marginal 
probabilities of failure decrease. In Figure 12, the 

components with one, two, and three paths to any 
supply show median relative changes in marginal prob
abilities of failure that are within 120% of each other 
(e.g., at a 75% input conditional probability of failure for 
power supply components, components with one, two, 
and three paths to a supply have median relative 
changes of 610%, 697%, and 730%, respectively). In 
this figure, there is only one component with three 
paths to a supply and four dependencies to that supply, 
which is represented as a line across each boxplot. There 
are seven components with two paths to a supply and 
four dependencies to that supply, which is shown in 
dark blue, and seven components with one path and 
four dependencies to their supply, shown in teal. There 
is much less variation across the results for components 
with two paths to a supply compared to components 
with just one path to a supply, which is consistent with 
results that show added redundancies (previously, paths 
to alternative supplies) reduce the relative change in 
marginal probabilities of failure as input conditional 
probabilities of failure increase.

In comparison, the results in Figure 13 show larger 
differences in outcomes based on the fewest number 
dependencies to a supply. Components with the fewest 
dependencies to the supply show the largest relative 
changes in marginal failure probabilities. At a 75% 
input conditional probability of failure for power supply 
components, the differences are largest, with median 
relative changes in marginal probabilities of failure of 
1182% for components with one dependency and 515% 
for components with six dependencies. Therefore, 

Figure 11. Fewest number of dependencies versus number of 
paths to a supply for each one-supply distribution component.
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redundancies to the same supply for these one-supply 
distribution components (i.e., with varying number of 
paths) do not decrease their vulnerability as supply 
vulnerabilities vary, but components with fewer depen
dencies are more sensitive to these variations.

The marginal probabilities of failure increase as the 
number of dependencies for a component to reach 
a supply increases, as seen in Figure 9, while the com
ponents have larger relative changes to their marginal 
probabilities of failure as the number of dependencies 
decreases (seen in both Figures 10 and 13). This is 
because more dependencies create more vulnerabilities 

for a component (Figure 9); however, components 
with fewer dependencies will have increased sensitivity 
to changes to the only components they rely on – 
supply components, both within the same network 
and across infrastructures as service interdependency 
components. The results suggest that prioritization of 
repair, maintenance, and new construction should 
strongly consider the number of dependencies 
required for a component to function. While reducing 
dependencies decreases a component’s marginal prob
ability of failure, components that have fewer depen
dencies are more susceptible to changes at supplies and 

Figure 12. Relative changes in marginal probabilities of failure versus input conditional probabilities of failure for power supply 
components grouped by number of paths to a supply for one-supply components with four dependencies to the supply.

Figure 13. Relative changes in marginal probabilities of failure versus input conditional probabilities of failure for power supply 
components grouped by number of dependencies to a supply for one-supply components with two paths to a supply.
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have larger increases in vulnerability than components 
with more dependencies as supply vulnerability 
increases.

6. Service interdependency redundancies

Another parameter of interdependent CIS that may be 
varied in an effort to reduce system vulnerability and 
increase system resilience is the number of available 
service component redundancies. Increasing the num
ber of service component redundancies is an action 
related to a system’s absorptive and adaptive capacities. 
For instance, a water network component may rely on 
a power supply to function, which may include redun
dant power supplies. In this section, the authors change 
the number of service interdependency redundancies at 
the water supplies in the Atlanta water distribution net
work. For each inference, an additional service compo
nent, representing an additional power supply, is 
introduced as a parent for each water supply compo
nent. Additional service redundancies in the water net
work lower marginal probabilities of failure for all 
distribution components, as expected, and these are 
not shown. From the inference results, multi-supply 
components have little to no change even as redundan
cies are added, which is consistent with the results from 
varying conditional probabilities of failure as found in 
the previous section. Moreover, there is little impact on 
the network by adding more than one redundancy to 
each water supply.

Instead, including at least one redundancy has the 
most impact on components that are closest or have 
fewer dependencies in their shortest path to reach 

a supply. Figure 14 shows the results from an inference 
with two power supplies at each water supply compo
nent (i.e., adding one redundancy per water supply), 
focusing on one-supply components. The relative 
changes in component marginal probabilities of failure 
between this analysis and the baseline network 
described in the previous section are plotted against 
the fewest number of dependencies to their supply. 
From Figure 14, as the fewest number of dependencies 
to a supply increases, the relative change in marginal 
probabilities of failure decreases. These results are con
sistent with those found in the previous section. 
Components with fewer dependencies to a supply are 
more sensitive to changes in the network, and increased 
vulnerability at supply components (i.e., those without 
service redundancies) most negatively impacts these 
components. At the same time, adding service interde
pendency redundancies such as a power backup at the 
water supply benefits these components (i.e., those with 
fewer dependencies to a supply) the most.

7. System link configuration

Finally, the authors vary the Atlanta water distribution 
network’s link configuration by introducing new edges 
into the CIS BN. In the CIS BN, a new link or edge 
represents a new element of the network such as a newly 
constructed pipe or connection in the network between 
two water network components, whether supply or dis
tribution. To choose new links for the system, the 
authors identify components that are most at risk for 
failure along with the next closest, unconnected compo
nent to them. The purpose of this analysis is to identify 

Figure 14. Relative changes in marginal probabilities of failure for one-supply distribution components versus fewest number of 
dependencies to the supply when adding a service redundancy.
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new edges in the network to represent actions to strate
gically locate and build out new parts of the original 
network based on anticipated network effects.

To evaluate the efficacy of varying system link con
figuration options, the authors consider the population 
impacts of a given asset failure. The authors select 
population impacts as a metric for quantifying network 
resilience for this section because for failure scenarios, 
failed nodes have a 100% probability of failure. This 
means that all output marginal probabilities of failure 
for failed components will be equal to 1, whereas popu
lation impacts provide a way to quantify and differenti
ate results for these components.

Population impacts from a failure at different water 
supply and distribution components are evaluated under 
the assumption that the population surrounding 
a component is directly impacted by failure of that com
ponent. The population associated with each node in the 
Atlanta water network is computed using a k-nearest 
neighbor algorithm to associate United States Census 
blocks (US Census Bureau, 2010) to individual water 
supply or distribution components. The population dis
tribution across the water network based on this analysis 
is shown in Figure 15, where the color bar represents 
population. The authors next present analysis results 
from a failure scenario of Supply 4, around which the 
population density is greatest.

Figure 16 shows the resulting probabilities of failure 
for components across the network obtained from an 
inference run over the CIS BN under a failure scenario 
where Supply 4 has failed. The color bar represents 
marginal probabilities of failure after inference is con
ducted with this evidence. This results in two failed 
distribution nodes, labeled A and B in Figure 16. 
Distribution components A and B have no other reach
able supplies based on the MLS components for this 
analysis, i.e., they are one-supply components. The 
remaining distribution components in the network 
have low marginal probabilities of failure because they 
are able to reach a different supply, i.e., one(s) other 
than Supply 4. Figures 17–20 show four options from 
the link analysis to decrease the vulnerability of the 
distribution components with a new system link config
uration. In these figures, one new link per analysis is 
added to the network and the inference is rerun to 
investigate the effects of the new link on system perfor
mance under the same failure scenario. The potential 
new links are identified based on the analysis of the next 
closest, unconnected components to the failed nodes. 
Each time a new link is added to the system, a depth- 
first search is run to identify newly formed supply-to- 
distribution component paths (MLSs) from the added 
link. With each additional MLS, a new node is added to 

the network, creating new dependencies. Table 6 shows 
the original CPT for Node A as Node A begins with only 
one reachable supply (Supply 4) and only one path to 
reach that supply. Table 7 shows a sample CPT for Node 
A after a new link is added to the system if that link 
corresponds with the addition of one new MLS (regard
less of whether or not the new MLS reaches the same or 
a different supply).

In Figures 17 and 20, distribution components A and 
B fail despite a new added link. In Figure 19, Node 
B survives, while Node A fails, and in Figure 18, both 
Nodes A and B survive when evidence is input that 
Supply 4 has failed.

Figure 15. Population distributed across Atlanta water network 
nodes.

Figure 16. Failure scenario results when Supply 4 fails.
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Among the new link options, a new edge to the net
work prevents either Node A or B from failing when 
they provide new paths to a different supply other than 
Supply 4. This is the case for the new link added in 
Figure 18. The paths in this analysis are computed 
through a depth-first search; MLS components can 
also be input in the CIS BN by the user, making these 
results applicable to any distribution component in any 
network modeled by the CIS BN. In general, 
a distribution component cannot survive if its only 
supply or source fails. Given the important relationship 
between distribution component performance and its 
connectivity with other nodes in the network, the results 
underscore the need to better understand the dependen
cies and redundancies within a CIS before making deci
sions to build out new parts of the network.

To quantify the variation in outcomes from the 
four new link options, the authors consider the 
populations affected by the original failure scenario 
(Figure 16) and the outcomes from the failure sce
nario under each new system link configuration 
(Figures 17–20). This quantification is included in 
lieu of an analysis of resulting marginal probabilities 
of failure (i.e., as in the previous section) because the 
variation in the input parameter, link configuration, 
does not occur over a range of values. Instead, one 
failure scenario is selected, and population effects are 
evaluated for each system link configuration under 
that failure scenario. As the performance of CIS 
directly affects the vulnerability and resilience of 
their surrounding communities, community-based 
outcomes are selected for evaluation, including 
population, housing units, and critical facilities 
affected as shown in Table 8. Population and housing 
units affected in each scenario are computed using 

Figure 17. New link added to Node A (1).

Figure 19. New link added to Node B (1).

Figure 18. New link added to Node A (2).

Figure 20. New link added to Node B (2).

SUSTAINABLE AND RESILIENT INFRASTRUCTURE 1001



census blocks, and critical facilities are counted using 
OpenStreetMaps data (Open Street Map 2018), 
including hospitals and other emergency facilities. 
The data confirm that the highest population impacts 
from a Supply 4 failure scenario occur when Supply 
4, Node A, and Node B all fail. The option consid
ered in Figure 18 leads to the greatest reduction in 
population vulnerability due to the infrastructure 
asset failure. Using community- and population- 
based outcomes as shown in Table 8 is an important 
analysis to include in the decision-making process to 

prioritize maintenance, repair, and construction 
actions to increase CIS resilience.

8. Generalizability of results

The authors draw three general conclusions that are 
applicable to interdependent CIS from the analyses 
and results in this study:

(1) Components in a CIS that have only one reachable 
supply or source are most sensitive to any variations 
in network parameters, including variations that 
lead to both increased and decreased vulnerability.

(2) Among components with one reachable supply (i.e., 
with no supply redundancies), components with 
fewer path dependencies are more sensitive to net
work parameter variations. These components are 
often closest to a supply or source in terms of 
physical distance with fewer dependencies to that 

Table 8. Community impacts from Supply 4 failure and new 
system link configuration scenarios.

Link Configuration with Supply 4 
Failure Population

Housing 
Units

Critical 
Facilities

Figures 17, 18, and 21: Supply 4, Node 
A, and Node B fail

96,217 57,445 7

Figure 19: Supply 4 fails 21,340 12,203 2
Figure 20: Supply 4 and Node A fail 62,829 37,748 5

Figure 21. Schematic of the Shelby County, Tennessee, water distribution network with one-supply and multi-supply components 
shown.

Table 7. Sample conditional probability table for Node A after a new link is added connecting it to another node in the network.
Hazard occurs Hazard does not occur

Original MLS fails Original MLS survives Original MLS fails Original MLS survives

Node A state New MLS fails New MLS survives New MLS fails New MLS survives New MLS fails New MLS survives New MLS fails New MLS survives

Fails 1.0 0.01 0.01 0.01 1.0 0.0001 0.0001 0.0001
Survives 0 0.99 0.99 0.99 0 0.9999 0.9999 0.9999
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supply. The increased sensitivity to network para
meter variations applies to both changes to compo
nent conditional probabilities of failure and to the 
number of service interdependency redundancies.

(3) New edges or links in a system have the most impact 
on the network when adding new paths to create 
more supply redundancies. Decisions to build out 
new system links should consider community and 
population impacts in potential failure scenarios.

To confirm generalizability of the results from the 
analysis of the Atlanta water distribution network to 
other interdependent CIS, the authors conduct 
a similar, condensed analysis on a different water distri
bution network in Shelby County, Tennessee. The sche
matic of the water network is shown in Figure 21. The 
Shelby County network has 49 components, 15 of which 
are supply components. Of the remaining 34 distribution 
components, 10 are identified as one-supply components 
using a depth-first search analysis to define MLS compo
nents for the network. The authors input the same net
work parameters as for the Atlanta network analysis (i.e., 
1% initial conditional probabilities of failure, 1% prob
abilities of a hazard occurrence, and one service and 
access component per water supply component).

Figures 22–24 show the results from varying the 
power (i.e., service) component conditional probabil
ities of failure. The results from this analysis are con
sistent with results from analyses of the Atlanta network 
and are described in more detail below. Variations in 

other network parameters, such as service redundancies 
and link configurations, are consistent with conditional 
probability of failure variation, and results from varying 
power redundancies and link configurations for the 
Shelby County network are therefore expected to be 
consistent with the results from this variation as well.

Figure 22 shows the resulting marginal probabilities 
of failure for distribution components in the Shelby 
County network as conditional probabilities of failure 
at the power supply components are varied. The stan
dard deviations of results across components are smaller 
than those from the Atlanta network. This is due to the 
smaller size and compressed layout of the Shelby 
County network as compared to the Atlanta network. 
However, the results follow similar trends in both net
works: firstly, there is a distinct difference in anticipated 
outcomes for one-supply compared to multi-supply 
components; secondly, the marginal probabilities of fail
ure for one-supply distribution components increases as 
the conditional probabilities of failure at the service 
components are increased; thirdly, multi-supply com
ponents are shown with very little change even as the 
power supply component parameters (i.e., input condi
tional probabilities of failure) are varied.

Figures 23 and 24 show the relative changes in 
marginal probabilities of failure for each new service 
component parameter variation compared to 
a baseline of power supply conditional probability of 
failure equal to 1% for conditional failure probabilities 
less than (Figure 23) and greater than (Figure 24) 1%, 

Figure 22. Marginal probabilities of failure results versus power supply conditional probabilities of failure for the Shelby County 
network.
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respectively. As in Figure 5, the vertical axis in 
Figure 23 goes below zero, representing decreased 
marginal probabilities of failure with decreased input 
conditional probabilities of failure for the power sup
plies. These figures again show that one-supply com
ponents are most impacted by changes to this 
parameter and, more generally, by changes across the 
entire network, and that the variability in distribution 

component outcomes increases as power supply vul
nerability increases.

9. Conclusion

In this paper, the authors assess the impacts of varying 
three network parameters on CIS vulnerability and resi
lience. Impacts are evaluated at the individual distribution 

Figure 23. Relative changes in marginal probabilities of failure compared to a baseline inference versus service component conditional 
probabilities of failure for conditional probabilities less than 1%.

Figure 24. Relative changes in marginal probabilities of failure compared to a baseline inference versus service component conditional 
probabilities of failure for conditional probabilities greater than 1%.
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component-level with probabilistic analysis results that 
include interdependencies between multiple types of infra
structure systems. Results are discussed with respect to 
their implications for making decisions for prioritizing 
actions for infrastructure resilience. Atlanta’s water distri
bution network is used as an example application for 
analysis from which general conclusions are drawn. The 
network is modeled within a Bayesian network frame
work, with connections to service and access components 
that represent interdependencies across different infra
structures and with geographic dependencies representing 
hazard events.

Outcomes from the analyses are used to compare 
component states under changing conditions captured 
through variations in network parameters, such as 
damages occurring during a disaster event (increasing 
component-level vulnerability) or preventive measures 
taken to increase resilience (through decreasing compo
nent likelihoods of failure). The results are then dis
cussed in the context of actions that can be taken to 
increase overall system resilience.

The network parameters varied include conditional 
probabilities of supply-component failure given a hazard 
event, representing potential retrofit or repair actions to 
specific infrastructure assets, or degradation of assets due 
to age or hazard event occurrence; service component 
redundancies, such as installing redundant or backup 
power supplies at a node to address vulnerabilities due 
to service provision interdependencies; and system link 
configuration, representing new construction in the CIS 
and modeled through adding new edges to the network. 
Inferences run over the model result in new marginal 
probabilities of failure for components across the network. 
The relative changes in resulting marginal probabilities are 
also computed between each parameter variation and 
a baseline inference. Community and population impacts 
are considered when adding new links to the system to 
assess CIS impacts under specific failure scenarios.

The results show three main conclusions. First, 
changes to network parameters have the highest impact 
on components in a CIS that have only one supply or 
source. These components have no supply redundancies. 
This outcome suggests that adding just one path to 
a different supply for a one-supply distribution compo
nent will significantly decrease that component’s vulner
ability. Second, among one-supply components, those 
that are most sensitive to changes to network parameters 
are components with fewer path dependencies to reach 
a supply. These results suggest that municipalities should 
not only consider risks to specific CIS components but 
also the placement of CIS components in a system when 
seeking to increase overall system performance and 
when prioritizing resilience strategies and actions. 

Third, building out new parts of a system has the most 
impact on the network and the community it is serving 
when doing so adds new paths to supplies in a system. 
The results indicate that when considering adding new 
links to a CIS, infrastructure owners should consider the 
new path dependencies and redundancies that will sub
sequently occur to maximize the impact of the new 
construction. The generalizability of results is confirmed 
by running a similar set of analyses over the water dis
tribution network in Shelby County, Tennessee.

This work contributes to studies in quantifying CIS 
performance, and its novelty is in the quantitative eva
luation of CIS performance at both the individual dis
tribution component and system levels as multiple 
network parameters are varied. The findings indicate 
important considerations in the prioritization of both 
retrofit and repair actions and for building out new 
parts of a system to increase CIS resilience. 
Conclusions are applicable to different types of interde
pendent infrastructures and hazards that impact them.
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