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ABSTRACT

Reliability analysis of complex networks is often limited by large and exponentially increasing computational
requirements with system size. In this paper, a new approximated analytical method the authors call the
probability propagation method (PrPm) is proposed to calculate the reliability of general complex networks. The
proposed method originates from the idea of belief propagation for inference in network graphs to pass a joint
probability distribution between nodes in the network. At each step, the distribution is updated and passed as the
message to its direct neighbors. After the message passes to the terminal node, an approximation of the network
reliability is found. In this paper, the derived updating rules for message passing are provided, as well as a
precise formulation of the error compared to the exact solution. The method is applied to three test applications:
an example from a previous study on network reliability, a power distribution network, and a general grid
network. Results from these applications show high accuracy for the proposed method compared to exact so-
lutions where possible for comparison. In addition, the authors show orders of magnitude increases in compu-
tational efficiency of PrPm compared to existing approaches. This includes reducing the computational cost for
analyses from an exponential increase in computation time with the size of the system to a quartic increase. The
proposed PrPm enables accurate and computationally tractable reliability assessments of larger, complex net-

works.

1. Introduction

The reliability analysis of systems is important to assess and predict
the performance of general complex networks. Furthermore, inference
over the network enables identification of critical components in the
system to support decision makers in setting inspection, maintenance,
or replacement policies. Many approaches exist to assess the reliability
of systems. These can generally be categorized as analytical or simu-
lation-based. Analytical approaches often require computationally in-
tensive total enumeration, either of the states of the components of a
system or of its link or cut sets. These processes result in exact assess-
ments of system reliability; however, they are typically characterized by
exponential increases in computational cost with system size. As an
alternative, simulation-based methods can be used. These result in
approximations of the reliability with increasing the number of sample
points generally yielding more accurate approximations of the exact
solution. However, for large complex networks, generating a sample
point and determining its outcome is time consuming. Several methods
to increase efficiency in sampling as well as to generate unbiased
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sample points have been developed. In this paper, we propose an al-
ternative analytical method, called the probability propagation method
(PrPm), to achieve accurate and computationally tractable reliability
assessments of complex networks. The systems of interest consist of
connected components modeled as networks of links and nodes. PrPm
originates from the idea of belief propagation to pass messages from
node to node. The passing of an approximated joint probability dis-
tribution results in an analytical solution for the system reliability. The
accuracy of the resulting approximated solution is influenced by the
assumptions made in message propagation. However, the computation
time is reduced significantly from an exponential to a quartic increase
with system size. In applying the proposed method to three test ex-
amples, the performance of PrPm is investigated compared to existing
methods.

2. Background and related work

A brief description of existing methods for system reliability analysis
is now provided, as well as the background for the proposed method.
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This is intended to provide an overview of methods for network relia-
bility assessment rather than to serve as a comprehensive list. The
reader is referred to texts such as Birolini [2] for more details on re-
liability engineering.

At a fundamental level, systems can be assessed as a combination of
the two basic network configurations: parallel and series. These con-
figurations can be used to model redundancy and linear connections
between components, respectively. Reliability analysis for simple net-
works is easily determined by the characteristics of parallel and series
systems. However, most realistic systems are in complex configurations,
e.g. critical infrastructure systems such as power distribution networks
with multiple sources and system interconnects, or overlapping pipeline
designs for water and gas networks, which cannot be reduced to simple
series and parallel configurations.

One method to analytically assess the reliability of general complex
networks is through total enumeration, which lists all possible combi-
nations of components and their corresponding outcomes in the system.
Criticism for total enumeration comes from its exponential increase in
computational cost as the number of components in the system in-
creases.

An alternative analytical approach is based on the recursive de-
composition algorithm (RDA) as presented in Dotson and Gobien [9]
and described in Lim and Song [12]. Selective RDA is proposed to
improve the efficiency of the original RDA by identifying the most re-
liable paths. While the number of disjoint sets and computational cost is
reduced heavily in the test network, a rigorous proof of faster con-
vergence compared to using the shortest path is not provided. In cases
where the most reliable paths are not significantly more dominant than
others, the computational cost may still follow an exponential increase.
In Kim and Kang [11], the authors extend the application of RDA from
one initial and one terminal node to general multi-initial and multi-
terminal node networks. In RDA, certain components in a link set are
considered to be failed in a graph. Graphs are then decomposed into
sub-graphs recursively by eliminating the failed components in the
previous step. Decomposition continues recursively until all disjoint
link sets are identified. However, the number of sub-graphs will in-
crease exponentially with the number of nodes in the graph, resulting in
an exponential increase in computational cost in some cases.

Another method for analyzing the reliability of systems in complex
configurations is through the use of Bayesian networks (BNs). One input
required for the analyses is the set of minimum link sets (MLSs) or
minimum cut sets (MCSs) of the system. Several efficient methods, e.g.
EG-CUT algorithm for undirected graphs proposed by Shin and Koh
[16], have been developed to enumerate all MCSs or MLSs, which is an
NP-hard problem [17]. By using a blocking mechanism repeatedly,
MCSs can be generated at O(en) per minimal cut set, where e is the
number of edges and n the number of nodes in the graph. In Tien and
Der Kiureghian [19], BNs are used to probabilistically model system
performance. Exact solutions for system reliability are achieved by
performing inference calculations on the values in the conditional
probability distributions defining the performance of each node in the
BN. Computational limits in generating the BN for a general complex
network, however, still exist [20], particularly for nodes in the BN with
many parent nodes on which they depend.

MLSs and MCSs on their own can provide crude lower and upper
bounds of system reliability. In Ebeling [7], the reliability bounds of the
system are determined by considering all MLSs to be in parallel (sur-
vival of any link set yields survival of the system) and all MCSs to be in
series (failure of any cut set yields failure of the system). However, this
method still relies on the generation of all MLSs and MCSs, which is NP-
hard. In addition, the bounds provided by this method can be wide as it
assumes that all MLSs and MCSs are independent of each other.

As an alternative to analytical solutions, simulation-based methods
are widely used to assess the reliability of networks. Several sampling
methods have been proposed to achieve improved efficiency in esti-
mating low system failure probabilities, e.g., the random walk on
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graphs [4] and the refined stratified sampling strategy [15]. Bulteau
and El Khadiri [3] combine importance sampling and stratified Monte
Carlo principles to generate nodal states. However, after a sample point
is generated, it still needs to be tested against the MLSs or MCSs to
determine the network outcome. Rejection sampling is used by Cheng
et al. [5] in parametric sensitivity analysis and approximation of
probability of failure. Compared with direct Monte Carlo simulation
and extended Monte Carlo simulation analysis, rejection sampling im-
proves both accuracy and efficiency. However, this method requires
finding a distribution from which to sample.

For flow network reliability measures, subset simulation also im-
proves on accuracy and efficiency compared to basic Monte Carlo, e.g.,
the subset simulation-based network reliability analysis in Zuev et al.
[23]. One of the main challenges, however, is calculating the indicator
function, which defines the system state given states of the links. Al-
though sampling size for subset simulation is small compared with
traditional Monte Carlo, it is still expensive to evaluate the indicator
function for each sample point. One of the advantages of our proposed
method is the absence of an indicator function as the distribution of
nodal states is determined by propagation across the network as de-
scribed in the following section.

We propose a new analytical method, called PrPm, to obtain accu-
rate and computationally tractable reliability assessments of general
networks. The proposed method originates from the idea of belief
propagation to perform inference in network graphs. Belief propagation
is a message-passing algorithm that provides an exact solution for
acyclic graphs. The reader is referred to Coughlan [6] and Barber [1]
for more details on the method. In general, a message is calculated and
passed to other nodes in the graph, where it is updated before con-
tinuing propagation. The message, which is a partial sum reusable for
the marginalization, is obtained by calculating the marginal distribu-
tion of each unobserved node conditioned on any observed nodes. The
message carried by a node is updated according to the message received
from its direct neighbors. Based on the Hammersley-Clifford theorem,
for nodes in the graph X, the joint distribution p(X) = éHceé“ch’
where Z is the normalization constant, £ is the set of maximal cliques of
the graph, and W are the potential functions. The number of terms in
the joint distribution p(X) grows exponentially as the number of nodes
in the network increases. The advantage of belief propagation is that
marginal probabilities can be computed in a time that grows only lin-
early with the number of nodes in the system [22]. However, for cases
where the joint distribution p(X) cannot be expressed explicitly, as for a
general network, belief propagation loses its advantage.

In this paper, we propose the new PrPm based on the idea of belief
propagation to analyze the reliability of general complex networks. As
an overview of the method, we first begin at the source node. We cal-
culate the two-node joint probability distribution, which is the message
we pass from the source node to its direct neighbor(s). The two-node
joint distribution is used as an efficient approximation of the full joint
probability distribution over all nodes. We continue passing the mes-
sage to direct neighbors according to a propagation sequence, which we
determine based on the network configuration. Because of the two-node
distribution message, we expand the network as needed so that every
node in the network receives a message from at most two direct
neighbors. This nodal expansion step facilitates the calculation while
retaining the topological characteristics of the network. Finally, the
message that is passed to the terminal node provides the approximation
of the reliability of the network, where reliability is defined as the
probability of reaching the terminal node from the source node.

The rest of the paper is organized as follows. In the following sec-
tion, the proposed PrPm is described in more detail, including de-
termination of the propagation sequence, providing the updating rules
for the message passing, describing the nodal expansion process, and
providing a precise derivation of the error compared to the exact so-
lution. We then apply the method to three test applications: a simple
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example from a previous study on network reliability for validation
against the exact solution, a more complex system of a real power
distribution network, and a general grid network for comparison with
existing approaches and analysis of systems of increasing size. The
performance of the method for the three examples is shown in terms of
accuracy and computational cost. In the grid example, further discus-
sion on the two-node versus full joint distribution is provided. The
paper concludes with a comparison between the proposed method and
existing methods in terms of computation time and accuracy for net-
work reliability analysis.

3. Proposed method: PrPm
3.1. Probability propagation sequence

The objective of the proposed PrPm is to propagate the message
throughout the entire network starting from the source node to the
terminal node. To do this, the sequence of probability propagation must
be determined. The following terminology is used: if a node does not
carry any message, it is labeled as a non-propagated node. Once a node
receives a message from its neighbors, it is recognized as a propagated
node. In each step of probability propagation, the message passes from
the propagated node to its non-propagated direct neighbors. The se-
quence of nodes in receiving and passing the message is determined
based on the three rules listed below:

1 Newly defined propagated nodes must be the direct neighbors of
propagated nodes.

2 Newly defined propagated nodes should not separate any two non-
propagated nodes, which guarantees that every node in the network
is considered.

3 Newly defined propagated nodes should not connect with each
other, which guarantees that every link in the network is considered.

An example of the propagation sequence determination is shown in
Fig. 1. The source and terminal nodes are marked as S and T, respec-
tively. Note that S and T can occur anywhere in the network. The other
nodes are numbered for clarity in the illustration. The method is ap-
plicable for both directed and undirected graphs as the derivation of the
updating rules in the following section does not depend on the direc-
tivity of the links. In the case of directed links, such as one described by
two unidirectional links where the reliability from a node i to node j
differs from that from j to i, one would need only to specify two sets of
link reliabilities for the two directions for R, and R, in the updating
rules described later in Tables 1 and 2. The method is also applicable for
cyclic networks, an example of which is illustrated in Fig. 1.

In Fig. 1 and in the rest of the paper, we use three symbols to denote
the different node types. The empty circle represents a non-propagated
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Table 1
Updating rules when receiving message from one direct neighbor.
A C Pr A C N Updates
0 0 Py = 0 0 0 P,(1-R;R)
0 0 1 P;R;R
0 1 P, 0 1 0 Po(1-R;R)
0 1 1 P,R:R
1 0 P, 1 0 0 Pa(1-R;R)
1 0 1 PsRiR
1 1 P, 1 1 0 P4(1-R;R)
1 1 1 P.R,R
Table 2
Updating rules when receiving message from two direct neighbors.
A B C Pr A B C N Updates
0 0 0 Pb = 0 0 0 0 P
0 0 0 1 0
0 0 1 Py 0 0 1 0 P,
0 0 1 1 0
0 1 0 Ps 0 1 0 0 P3l-RR)
0 1 0 1 Ps(1-R1)R:R
0 1 1 P, 0 1 1 0 Py 1-RR)
0 1 1 1 Ps1-R1)R:R
1 0 0 P 1 0 0 0 Py 1-RR)
1 0 0 1 PRR(1-Ry)
1 0 1 Pe 1 0 1 0 Pe(l-R;R)
1 0 1 1 Ps(l-RIRR
1 1 0 Py 1 1 0 0 PAI-[1-(1-R1)(1-R2)IR}
1 1 0 1 PaRRR+PRRR,+P,[1-(1-R)(1-R)IR
1 1 1 Pg 1 1 1 0 Pg{l-[1-(1-R)(1-R)IR}
1 1 1 1 PsRRR+PsRRiRy+Pg[1-(1-R;)(1-R3)IR

node that has not yet received any message. The solid circle represents a
propagated node that will not be involved in any future massage pas-
sing. We name these as non-boundary nodes. The solid diamond re-
presents a propagated node that will be involved in future propagation
steps. We name these as boundary nodes.

The top left graph in Fig. 1 shows the initial state. In it, the source
node is the only node that carries a message and is labeled as a solid
diamond. The remaining nodes are labeled as empty circles because
they have not yet received any message. Following rule #1, S is ready to
propagate its message to its direct neighbors, nodes 2, 8, 12, and 6. The
next step of the propagation is shown in the second graph from top left.
Note that if node S propagates to nodes 2, 8, 12, and 6 at the same time,
node 1 will be separated from the terminal node, which violates rule
#2. Therefore, the next nodes propagated are 2, 8, and 12. The next
step of the propagation is shown in the third graph from top left. From
nodes 2, S, and 12, if we pass the message to nodes 1, 6, and 11 in the

21 22 23 24 T 21 22 23 24 T 29 22 23 24 T
o—0

16 7 18 19 20 JI6 17 18 9 L0 6 17 18 19 L0 lUB 17 18 19 L0

1 12 N3 U4 U5 g1 Hz2 N3 f4 U5 A1 12 13 H4 H5 U1 H2 U3 14 5

3

| 2 3 4

Gl

4 5 | 2 <] 4

49— boundary node

e——non-boundary node

o——non-propagated node

Fig. 1. Propagation sequence illustration from source node S to terminal node T.
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same step, links 6 — 1 and 6 — 11 are excluded from the network, which
violates rule #3. Therefore, the next nodes propagated are 1, 3, 9, 13,
and 17. The propagation continues until reaching the final step of the
propagation as shown in the bottom right graph. By receiving the
message from boundary nodes 24 and 20, the reliability at the terminal
node T is determined. All steps are shown in Fig. 1. In some cases,
including in the example network shown in Fig. 1, there are multiple
propagation sequences satisfying the three rules above. For example,
for the top right graph in Fig. 1, you may choose 11 -19—-50r 5—
11 — 19, etc. As long as the sequence satisfies the propagation rules, it
is acceptable. A rule of thumb is to prioritize propagating to nodes with
one direct neighbor as this yields no approximation in the calculation.

3.2. Message passing and updating rules

We now discuss the message that is passed from node to node and
how it is updated during propagation. We assume that each node re-
ceives messages from at most two direct neighbors. The situation where
a node has more than two direct neighbors is addressed through a nodal
expansion procedure presented in the following subsection. We also
assume a binary network, i.e., one where nodes can be in one of two
states such as 0 or 1 indicating failure or survival, respectively. For
multi-state networks, the proposed PrPm is still workable if the multi-
state network is converted into a binary state network. For example, we
can classify a system of multiple states as achieving or not achieving a
certain level of service, or define survival as link flow capacity over a
certain threshold and failure otherwise. Here, for message passing, two
cases are considered: when a node receives a message from one direct
neighbor as shown in Fig. 2, or from two direct neighbors as shown in
Fig. 3. In these figures, we denote the node that receives a message as N,
the direct neighbors that pass the message as A and B, and a general
boundary node that is not a direct neighbor to N as C.

For the first case (Fig. 2), node N receives a message from one direct
neighbor A. The message is the joint distribution of the two nodes A and
C from the previous propagation step. If it is the initial step, the mes-
sage is the prior distribution of the source node. Reliability R; denoted
with a subscript indicates reliability of a link. The survival of node N is
dependent on the survival of node A and the reliability of the link
A — N denoted R;. The new discrete three-node joint distribution p(A,
C, N) is then derived using the updating rules shown in Table 1, where
the distribution indicates the probability that each node is in one of two
states, failure indicated O or success indicated 1. It is noted that no
approximations are made in this calculation. Table 1 provides the up-
dated probabilities that nodes A, C, and N are in each of the possible
combinations of states 0 or 1. R denotes the reliability of node N, i.e.,
R = P(N = 1), which is previously defined. Once the three-node joint
distribution is obtained, we can easily define the new two-node joint
distributions p(A, N) and p(C, N).

For the second case (Fig. 3), node N receives a message from two
direct neighbors A and B. The message we need for the calculation is the
joint distribution of the two nodes A and B and the marginal

C o . : 5

b

Fig. 2. Message passing illustration from one direct neighbor.
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Fig. 3. Message passing illustration from two direct neighbors.

distribution of node C, which can be inferred from the two-node joint
distribution including node C. In updating the message, we assume that
node C is separated from nodes A and B, which indicates that links
A — N and B — N have no influence on node C. This underestimates
reliability of node C. A detailed analysis of the error introduced by this
assumption is provided later in this section.

Table 2 shows the updating rules to build the four-node joint dis-
tribution p(A, B, C, N) from the three-node joint distribution p(A, B, C),
where R, R, and R, indicate the reliabilities of node N, link A — N, and
link B — N, respectively. The new joint distributions p(A, N), p(B, N),
and p(C, N) for future propagation steps can be defined accordingly.
Based on the four-node joint distribution p(A, B, C, N), p(A, B), p(4, ©),
and p(B, C) are updated as well.

One important result from the updating rules given in Tables 1 and
2 is that we need the joint distributions of only two nodes rather than
all nodes during the message-passing process. While this yields an ap-
proximated solution, PrPm reduces the computational cost from an
exponential increase with the number of nodes in the network O(2") to
a quartic increase O(n*). A detailed analysis of the computational
complexity of the method is provided later in this section.

3.3. Nodal expansion

The updating rules in Tables 1 and 2 are based on the assumption
that every node receives a message from no more than two nodes. In a
general network, however, it is possible that a node receives a message
from a greater number of nodes. For example, as shown in Fig. 4(a), a
node i can have four or five direct neighbors. The updating in Tables 1
and 2 will not work for these configurations. However, we can expand
the node i as shown in Fig. 4(b). It is easy to prove that the config-
urations in Fig. 4(a) are equivalent to the configurations in Fig. 4(b), for
which the previously derived updating rules are applicable. For ex-
ample, for the four-neighbor case, instead of updating node i directly,
we update the node sequentially i, — i, — i3 — i, as an alternative. Si-
milarly, for the five-neighbor case, the updating rules are applicable if
we update the node i, — i, — i3 — iy — i; as shown on the right. In the
proposed method, nodal expansion is performed before beginning the
message passing. Without affecting the connectivity of original net-
work, the additional links created by nodal expansion are set to be
100% reliable.

3.4. Overall method

The full flowchart of the proposed PrPm is shown in Fig. 5. First, we
determine the propagation sequence based on the network configura-
tion and propagation rules. This provides the sequence of steps in the
probability propagation process for when and how each node receives
the message from the other nodes. Then, we expand the nodes in the
network as necessary to ensure that every node receives a message from
at most two direct neighbors. Next is the message passing between
nodes, where we define and update the message based on link and node
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(a)
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Fig. 4. Nodal expansion illustration from multiple direct neighbors (a) to two
direct neighbors (b).

reliabilities and the derived updating rules. After the message propa-
gates to the terminal node, the approximated analytical solution of the
network reliability is obtained.

3.5. Target networks

The proposed PrPm is applicable to directed, undirected, cyclic, and
acyclic networks. In the case of directed networks, the method is able to
analyze networks with bidirectional or unidirectional links as long as
the individual link reliabilities are specified. PrPm works for both
single-source-single-sink networks as shown in the first and third test
applications, and multiple-sources-single-sink networks as shown in the
second test application. For applications on networks with multiple
sinks, for example as in Liu and Li [13], evaluations can be done on
each terminal node separately. Applicable networks of the proposed
method should have independent or conditionally independent links or
nodes as we do not consider the link conditional probabilities in cal-
culating nodal joint distributions. However, the method can be applied
to achieve significant computational savings for systems with depen-
dent components by conditioning on common parents of the links or
nodes.

3.6. Computational complexity analysis

The computational complexity of the method derives from the nodal
expansion and updating rules. As we need to expand the node to ensure
that every node receives information from at most two direct neighbors,
for a network with n nodes, the newly defined propagated nodes

Network
configuration

reliability
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Fig. 6. Illustration of the exact (a) and extreme (b) cases for error analysis.

connect to O(n) neighbors with the maximum number being n for a fully
connected network. Thus, there will be 0(n?) nodes in total. According
to the updating rules, for each newly defined propagated node, the
computational cost for that node is 0(n?), as the number of C nodes is O
(n®) with the maximum number being n? — 2, excluding node A and
node N as shown in Fig. 2. Therefore, the total computational cost is the
combined individual computational costs, O(n*)0(n*) = O(n").

3.7. Error analysis

We now discuss the approximation error of the proposed method
compared to the exact solution. The error in message passing arises
from building the three-node joint distribution p(A, B, C) from p(A, B)
and p(C) as shown in Table 2 and the assumption that node C is sepa-
rated from nodes A and B. The exact case and the extreme case for
assessing the error are shown in Fig. 6(a) and (b), respectively. For the
purposes of the illustration, the source node S is taken as the previously
propagated node. In Fig. 6(a), nodes A, B, and C are connected to S by
three independent links with reliabilities R, R,, and Rs. Based on the
assumptions made in Table 2 that node C is independent of nodes A and
B, PrPm will give us the exact joint probability in this scenario. How-
ever, Fig. 6(b) shows the extreme case, i.e., the worst case in terms of
error, where a common link with reliability R, is shared by paths from
all nodes A, B, and C to S. The assumption in generating the joint dis-
tribution will not hold in this case because the reliability of node C is
influenced by the states of nodes A and B. For this case, the comparison
between the exact distribution and the approximated distribution for
PrPm is shown in Table 3.

In Table 3, the rightmost column gives the difference between the
exact and PrPm values for each element of the joint distribution p(A, B,
C), denoted A;. Analyzing the expressions for A; enables us to quantify
and analyze the error in the approximation. Specifically, we see that
A, Ay, Ag, Ag are greater than 0, which means that we underestimate
their probability shares in the proposed method; Ay, As, As, A7 are less
than 0, which means that we overestimate their probability shares. In
addition, A; + Ag = 0, indicating that the underestimation of the
probability for the more likely-to-be-survived state
(A=1,B=1,C=1)is equal to the overestimation of the probability
for the less likely-to-be-survived state (A = 1, B = 1, C = 0). Likewise,
As + Ag =0 and A; + A, = 0, indicating that the differences in their
probability shares are reallocated from the more likely-to-be-survived

Link/node

Determine Nodal
Start propagation expansion
sequence P

Approximated
M:::iange analytical solution of
p g network reliability

Fig. 5. Flowchart of the proposed PrPm.
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Table 3
Comparison between exact solution and distribution obtained from PrPm.
A B C Exact PrPm Difference
0 0 0 1 + R4(RiRy + RyR3+R3R3-Ry-Rz-R3-R;1RoRa) [1 + R4(R1R2-R;-R2)1(1-R3Rs) Ay (Ry +Ra-R1R2)R3R4(1-Ry)
0 0 1 (1-R1)(1-R2)R3Ry4 [1 + R4(R;R2-R;-R2)IR3Ry Ay -(R; +Rz-R1R2)RzR4(1-Ry)
0 1 0 (1-R1)R2(1-Ra)Ry (1-R1)R2(1-RaR4)Ry4 Az -(1-R1)RzR3R4(1-R4)
0 1 1 (1-R1)R2RaR4 (1-R1)RzR3R4* Ay (1-R1)R2R3R4(1-Rs)
1 0 0 R1(1-Rz)(1-R3)R, R1(1-R2)(1-RaR4)R4 A5 - R1(1-Rz)R3R4(1-Ry)
1 0 1 Ri(1-R2)RaRy Ri(1-Rz)RaR4* As Ri1(1-R2)R3R4(1-Rs)
1 1 0 RiR2(1-R3)Ry Ri1R2(1-R3R4)R4 Ay - R1RzR3R4(1-Rs)
1 1 1 RiRoR3R4 RiR:R3R,* Ag RyRoR3R4(1-Ry)

states to the less-likely-to-be-survived states as well. This under-
estimates the reliability. The only contrary case is for A; and A,,
where A} + A, = 0. However, A; = Ay + Ag + Ag; therefore, the mag-
nitude of the overestimation error equals the sum of the under-
estimation errors.

In addition, PRIA=0,B=0,C=1)— P(RIA =0, B =0,
C=0)>PRA=1,B=1,C=1)—PRA=1,B=1, C=0), where
P(R|A, B, C) denotes the reliability of the network given the states of
nodes A, B, and C. On the left-hand side of the inequality, terminal node
T cannot be reached from nodes A and B; while, on the right-hand side
of the inequality, terminal node T can be reached from nodes A and B.
The inequality holds because paths from node C to terminal node T may
share common links with paths from node A or B to T. For the same
reason, P(RA=0,B=0,C=1)—P(RIA=0,B=0,C=0)>P(RIA
=0,B=1,C=1-P(RIA=0,B=1,C=0) and P(RIA=0,
B=0,C=1-P(RA=0,B=0,C=0)>PRIA=1,B=0,C=1)
—P(RIA=1,B=0,C=0). Since A = Ay + Ag + Ag, it yields that
[PRA=0,B=0,C=1)—PRIA=0,B=0, C=0)]A >[P(RA
=1,B=1,C=1)—-PRIA=1,B=1,C=0)]As + [P(RIA =1,
B=0,C=1)—PRA=1,B=0,C=0)]As + [P(RIA=0,B =1,
C=1)—-P(RIA=0,B=1, C=0)]As. This indicates the reallocation
of the probability shares created by the proposed method overestimates
the reliability of the network, resulting in the upper bound.

However, we also assume there is no connection between nodes A
and B and node C. Under this assumption, C cannot be reached from A
and B when links A — N and B — N are added as in Fig. 3. This un-
derestimates the connectivity of the network and tends the reliability
toward the lower bound. These two effects, overestimation of the joint
distribution P(A, B, C) and underestimation of the reliability of node C,
combine and cancel out the error to some extent. In practice, the actual
error will fall between the errors given by the two extreme cases. Thus,
the result obtained by the proposed method becomes a relatively ac-
curate approximation to the exact solution as shown in the test appli-
cations.

A close look at the difference terms in Table 3 also reveals the
performance of the method under high system reliability and low
system reliability scenarios. All difference terms, A; to Ag, share a
common factor R4(1 — R,). For both a highly reliable system and in a
low reliability setting such as under a hazard, the term R,(1 — R,) tends
to 0, reducing the error in these cases.

In addition, due to the source of the approximation error, the ac-
curacy of the proposed PrPm increases as system failure probability
decreases. This is in contrast to most sampling-based approaches. The
sources of the error in PrPm compared to the exact solution are 1)
overestimation by the three-node joint distribution and 2) under-
estimation by assuming that C cannot be reached from A and B when
links A — N and B — N are added as shown in Fig. 3.

4. Test applications

We now apply the proposed PrPm to three test applications and
assess the performance in terms of accuracy and computational cost. All
results are based on computations run in MATLAB _R2016b on a 16 GB
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RAM computer. All examples have exact solutions and computational
costs for comparison with the proposed method. We demonstrate the
procedure of calculation in detail in the first example, which is a simple
single-source-single-sink network. A more complex, real-world, mul-
tiple-source-single-sink network is analyzed in the second example,
including assessments of the system with increasing link reliabilities. A
highly connected grid network is tested in the third example to assess
the performance of the proposed method in terms of both accuracy and
efficiency for systems of increasing size.

4.1. Seven-component network

First, we apply PrPm to an example from a previous study on net-
work reliability [21], which is shown in Fig. 7. This network is chosen
as it is irreducible to series and parallel components. It facilitates simple
illustration of the method, and the exact solution can be obtained to
compare accuracy with the result achieved by PrPm. For this example,
the reliability of each link is assumed to be 0.9. It is noted that as PrPm
calculates the network failure probability analytically, it is equally
computationally efficient for varying link failure probabilities of any
value across the network, including for highly reliable networks with
low probabilities of failure. For this example, nodes are considered to
be perfectly reliable. In the figure, S and T represent the source and
terminal nodes, respectively.

Following the overall process of the proposed PrPm shown in Fig. 5,
we first determine the propagation sequence, i.e., the order of nodes to
receive messages by the propagation and updating rules. In this case,
we pass messages following two possible sequences: S—>1—>2— 3 —
4—-TorS—1->3—2-—>4-T. In either case, the sequence ensures
every node is propagated before reaching the terminal node with both
sequences working equally. For this network, no node requires nodal
expansion.

We then pass the message through the network according to the
probability distribution updating rules in Tables 1 and 2. For illustra-
tion, we choose the first sequence above. We begin with node S. In-
itially, we have P(S=1) =1 and P(S = 0) = 0. The message is then
updated to node 1, the direct neighbor of S. Let nodes 1, ...,4 be denoted
Ny, ..,N;. In this step, P(N, = 1) = 0.9 and P(N; = 0) = 0.1. Next, the
message is updated to node 2 with P(N; =1, N, =1)=0.8],
P(N, =1, N, =0) = 0.09, P(Ny=0,N,=1)=0, and P
(N;= 0,N;=0)=0.1. Node 3 is then updated with message

2

/‘A‘4

S e

Fig. 7. Example irreducible seven-component network.
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Table 4
Performance comparison for seven-component network between exact and
PrPm solutions.

Reliability Computation time (sec)
Exact solution (BN) 0.7926 35.00
PrPm solution 0.7926 0.06
P(N, =1, N, =1) = 0.8748, P(N, =1, N; = 0) = 0.0081, P

(N, =0, N;=1)=0.0081, and P(N, = 0, N; = 0) = 0.109. Then, mes-
sage is updated to node 4 with P(N,=1)=0.8806 and
P(N; = 0) = 0.1194. Finally, we reach the terminal node with a message
P(T=1)=0.7926 and P(T = 0) = 0.2074 to complete the reliability
calculation.

In this case, as there is no C node during the propagation as shown
in Fig. 3, the result obtained by PrPm is the exact solution with no
errors. As a comparison, we cite the results from Tong and Tien [21],
which provide an exact solution for the reliability of the network by a
Bayesian network (BN) formulation. The comparison is given in
Table 4. In this case, the reliability value computed using PrPm is exact.
In terms of the computational cost, we see that computation time is
reduced by more than two orders of magnitude or 500 times to arrive at
the exact answer.

4.2. Power distribution network

Next, we apply PrPm to a more complex system, which is the ex-
ample four-substation power distribution network from Pacific Gas and
Electric [14] shown in Fig. 8, also investigated in Der Kiureghian and
Song [8] and Tien [18]. The original system consists of 59 components,
including circuit breakers, switches, and transformers. Each triplet
configuration in the system of switch-breaker-switch can be easily re-
presented as a single component. Therefore, 22 components are shown
in Fig. 8. For this example, all components are assumed to be

b —D

7‘ 8.') 11(: 19:)

120 20 o

Fig. 8. Power distribution network example.
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independent and no nodal failure is considered. Previous studies assess
network reliability based on varying component failure probabilities.
Here, we convert to link failure probabilities. Compared with the ori-
ginal network, links 1 — 2,3 — 10,5 — 13,7 — 8,11 — 19, 14 — 21 and
16 — 18 are assumed to be perfectly reliable as there are no additional
elements on these links. All other links, which have circuit breakers,
switches, and transformers located on them, have a probability of
failure pr. The network has multiple sources: nodes 1, 7, and 8; node T is
the terminal node. Note that PrPm is able to accommodate the case of
multiple source nodes across the network. As a reference, the method of
total enumeration is used to obtain the exact solution. Results from
Monte Carlo simulation are also provided for comparison. For this
network, the existence of the C node as shown in Fig. 3 during the
message-passing process introduces errors into the propagation.
Therefore, the results obtained by PrPm are an approximation in this
case.

To investigate the accuracy and computational cost of PrPm over
networks of varying reliabilities, we obtain results over a range of link
failure probabilities. Table 5 provides the comparison among total
enumeration to obtain the exact solution, Monte Carlo simulation, and
PrPm. Results are given in terms of system reliability assessment and
computation time (in seconds) as py increases from 0.01 to 0.2. For
Monte Carlo simulation, 10,000 realizations are simulated for each py.
From Table 5, PrPm outperforms Monte Carlo simulation in both ac-
curacy and computation time. The percentage error relative to relia-
bility for both PrPm and Monte Carlo decrease with smaller prob-
abilities of failure. However, the accuracy relative to system failure
probability decreases for Monte Carlo, as expected for simulation-based
methods, while PrPm increases in accuracy as failure probabilities de-
crease as described in the error analysis section.

The network reliabilities obtained by PrPm and the exact solution
are plotted in Fig. 9 to show the trend in accuracy across link and
system reliabilities. Over the investigated range of link failure prob-
abilities, the maximum percentage error is 0.6357%, with decreasing
error for systems of increasing reliability. As discussed in the error
analysis section, errors should decrease for cases with low link reli-
abilities such as under hazard scenarios as well. As an additional
comparison, if the link failure probability increases to 0.85, PrPm
provides a solution with 0.0801% error, with the exact solution and
PrPm indicating system failure probabilities of 0.9982 and 0.9974, re-
spectively. In terms of computation, as PrPm provides an analytical
solution, the burden of the method remains constant across system
failure probabilities. Therefore, for all cases, PrPm increases the effi-
ciency of obtaining the solution by more than three orders of magnitude
and 1800 times, indicated as time ratio in Table 5, in terms of com-
putation time.

4.3. Grid network

Finally, we apply PrPm to analyze the reliability of a general grid
network. First, we takea 5 X 5 grid as an example, with the source and
terminal nodes at the corners of the grid as shown in Fig. 10. Link
failure probability py is assumed to be 0.1 and node reliability 1 across
the network. We use the proposed PrPm and updating rules listed in
Tables 1 and 2 to obtain the approximated system reliability solution.
For comparison, we use results from implementing the recursive de-
composition algorithm (RDA). The RDA solution results in an upper
bound and lower bound. By performing the decomposition recursively,
the gap between the bounds is reduced to obtain a single system re-
liability value as shown in Table 6. Comparison between the perfor-
mance of RDA and PrPm is listed in Table 6. With a sacrifice of 1.25% in
accuracy, we reduce the computation time by more than four orders of
magnitude and 35,000 times for the 5 x 5 grid.

To explain the approximation error, we now provide further dis-
cussion on the error in propagating the two-node joint probability
distribution compared to the full joint distribution in the context of
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Table 5
Performance comparison for power distribution network among exact solution, PrPm, and Monte Carlo simulation varying py.
Exact solution PrPm Percentage error (%) relative to reliability =~ Percentage error (%) relative to failure probability = Time ratio
Pr Reliability  Time (sec)  Reliability = Time (sec)
0.0100  0.9899 113.63 0.9899 0.0629 0 0 1806.52
0.0500  0.9476 0.9474 0.0211 0.3817
0.1000  0.8900 0.8888 0.1348 1.0909
0.1500 0.8264 0.8233 0.3751 1.7857
0.2000  0.7551 0.7503 0.6357 1.9600
Exact solution Monte Carlo Percentage error (%) relative to reliability =~ Percentage error (%) relative to failure probability = Time ratio
Pr Reliability  Time (sec)  Reliability = Time (sec)
0.0100 0.9899 113.63 0.9912 1.1013 0.1313 12.8713 103.18
0.0500 0.9476 0.9454 0.2322 4.1985
0.1000  0.8900 0.8936 0.4045 3.2727
0.1500  0.8264 0.8211 0.6413 3.0530
0.2000  0.7551 0.7635 1.1124 3.4300
distribution of all boundary nodes at each step. By making assumptions
= on the connectivity within the boundary nodes, i.e., based on whether
b= 0.95 or not the boundary nodes are connected with each other, we can find
.-E the upper bound and lower bound of the system reliability.
® - For example, suppose we have nodes {4, ...,I} configured as part of a
'E 0.9 ~ — exact solution network as shown in Fig. 11. We use the joint distribution of all
g —PrPm boundary nodes, p(E, F, G, H, I), to update the joint distribution of the
2, P newly defined propagated nodes, p(A, B, C, D). Let 0 again denote the
2085 P failure of a node and 1 denote survival. When we update p(A, B, C, D)
% p 7 from P(E=1,F=1,G=0,H =1, I=1), the upper bound of p(A, B,
B y C, D) can be found by assuming that nodes E and F, also nodes H and I,
= P 7 are connected; the lower bound of p(A, B, C, D) can be found by as-
< 0.8 Z suming that there is no connection between nodes E and F, or between
E // nodes H and I. A similar strategy can be applied to the other node
7 combinations of E, F, G, H, and I. By doing so, we can find the upper
s . . bound and lower bound of the system reliability at the terminal node.
0.8 0.85 0.9 0.95 1 To quantify the effect of considering the joint distribution of all
Link reliability boundary nodes compared to the two-node distribution, we assess the

accuracy and computation time to obtain the network reliability of
grids of increasing size for the two cases. We take the corner-to-corner
reliability of the grid network as the example, with link reliability of 0.9

Fig. 9. Exact solution compared to results by PrPm varying py.

;,21 22 {_—,23 ,‘;)—,24 . T and node reliability 1. Table 7 shows the results of the two-node joint
distribution approximation compared to the upper and lower bounds
16 17 18 19 20 considering the joint distribution of all boundary nodes as the size of

the grid increases from 3 X 3 to 100 X 100. The full joint distribution
calculation becomes intractable after a grid size of 12 X 12.In Table 7,

11 12 13 14 15 the obtained bounds from the full joint distribution are guaranteed to
9 v N g ¢ include the exact solution. Computation times for both PrPm and the
full distribution calculation are provided. Percentage error is calculated

6 ; 7 8 9 . 10 for the PrPm approximation result compared to the median of the
T bounds.
S 2 3 4 5 From Table 7, we see that when considering the full joint distribu-

0 O s tion, there is an exponential increase in computation time as the size of
the grid increases. For a propagation step with n, boundary nodes,
calculating the joint distribution requires the storage and updating of
2" elements, resulting in an exponentially increasing computational
Table 6 complexity with n at O (2"). To improve the computational efficiency of
Performance comparison for grid network between RDA and PrPm. reliability assessment of the network, the proposed method only con-
siders the joint distribution of two nodes. With this, the accuracy of the

0.9755 1405.52 0.9877 0.0402 1.2564 35,050.37 A B C D

O
,p\ ,/Q\ /} R / C>\\
/ e \\ AN
analyzing the grid network reliability. As previously discussed, the ‘ N ‘
error in the PrPm approximation comes from the C node in Fig. 3 and E F G H |

using the distributions p(A, B) and p(C) to estimate p(A, B, C) in Table 2.
A more accurate result can be obtained by considering the joint

Fig. 10. A5 x 5 grid network.

RDA PrPm Percentage error  Time ratio
Reliability Time (sec) Reliability Time (sec) (%)

Fig. 11. Ilustration for considering the joint distribution of all boundary nodes.
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Table 7
Performance comparison for grid network between PrPm and considering the joint distribution of all boundary nodes.
Grid size PrPm Full joint distribution Percentage error (%) Time ratio
Reliability Time (sec) Reliability bounds Time (sec)
Upper Lower
3 x3 0.9833 0.1003 0.9725 0.9724 0.16 1.1157 1.60
4 x 4 0.9872 0.1092 0.9751 0.9750 0.26 1.2461 2.39
5x%x5 0.9877 0.1109 0.9756 0.9755 0.72 1.2455 6.49
6 X6 0.9878 0.1162 0.9756 0.9756 2.83 1.2505 24.40
7 x7 0.9878 0.1162 0.9757 0.9757 10.88 1.2401 93.79
8 x 8 0.9878 0.1162 0.9757 0.9757 42.98 1.2401 370.52
9x9 0.9878 0.1162 0.9757 0.9757 174.56 1.2401 1504.83
10 x 10 0.9878 0.1162 0.9757 0.9757 723.55 1.2401 6237.50
11 x 11 0.9878 0.1174 0.9757 0.9757 2986.20 1.2401 25,523.08
12 x 12 0.9878 0.1287 0.9757 0.9757 12,688.82 1.2401 98,362.95
20 x 20 0.9878 0.2188 / / / / /
30 x 30 0.9878 0.6423 / / / / /
40 x 40 0.9878 1.7913 / / / / /
50 x 50 0.9878 4.6558 / / / / /
75 x 75 0.9878 46.1766 / / / / /
100 x 100 0.9878 196.0232 / / / / /
Table 8 complexity with increasing nodes in the network n is reduced from an

Performance comparison for grid network between PrPm and Monte Carlo si-
mulation.

Grid size PrPm Monte Carlo simulation
Reliability = Percentage Reliability ~Percentage
error (%) error (%)
pr=01 3x3 0.9833 1.1157 0.9729 0.0411
4 x 4 0.9872 1.2461 0.9712 0.3897
5x5 0.9877 1.2455 0.9787 0.3178
10 x 10 0.9878 1.2401 0.9776 0.1947
pr =001 3x3 0.9998948 0.0102809 / /
4 x 4 0.9998979 0.0102050 / /
5x5 0.9998980 0.0102031 / /
10 x 10 0.9998980 0.0102031 / /

result is slightly lowered by 1.24%, but the computational cost is re-
duced by several orders of magnitude, with computational savings in-
creasing as the size of the network increases. With the consideration of
the two-node joint distribution, the time complexity of computation for
the proposed method is quartic at O(n™).

To further assess the performance of the method for general grid
networks, Table 8 provides a comparison of the accuracy of PrPm
compared to results from Monte Carlo simulation. The reader is referred
to Duefias-Osorio [10] for details on the Monte Carlo simulation. For
efficiency comparison, as the Monte Carlo simulations are tested on a
different computer, they are not included here. For accuracy compar-
ison, results in Table 8 are shown for systems with link failure prob-
abilities of 10% and 1%. Although the average percentage error
(0.24%) given by Monte Carlo simulation outperforms the average
percentage error of 1.21% by PrPm for the case of link reliabilities of
0.9, Monte Carlo has a major limitation in that in the rare event con-
dition, it can be computationally intractable to generate enough sam-
ples to calculate system reliabilities for low failure probability systems,
e.g., systems with high link reliabilities. This is shown for networks
with link reliabilities of 0.99. For the Monte Carlo simulation in this
case, the result fails to converge under 7.8 h of computation fora3 x 3
grid. In PrPm, computational efficiency is related only to the topology
of the network and not influenced by the link reliability.

5. Conclusion

In this paper, a new approximated analytical method, the prob-
ability propagation method (PrPm), is proposed to analyze the relia-
bility of general networks. Compared to existing analytical algorithms
such as RDA and inference in Bayesian networks, computational
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exponential increase O(2") to a quartic increase O(n*). The method does
not require the computationally intensive enumeration of component
states, MLSs, or MCSs to determine the system outcome. While the
method results in an approximated value for network reliability with a
small sacrifice in accuracy, compared with simulation-based methods,
the proposed analytical PrPm solution does not require generating
sample points or proving convergence. The source of the error in the
proposed approximation is analyzed analytically, showing terms that
both overestimate and underestimate the system reliability to effec-
tively cancel out to obtain a solution. The performance of PrPm is in-
vestigated using three example networks. In the first example, PrPm
results in the exact solution as all boundary nodes are direct neighbors
at each step. In the second example, PrPm is shown to work for a
network with multiple sources. Computational time is reduced by more
than 1800 times with a maximum error in the reliability result of 0.64%
compared to the exact solution. In the last example, the results show
that the computation time does not exponentially increase with system
size as with other methods, and the error is stable. Many sampling-
based approaches are limited by computational tractability to analyze
rare events. For PrPm, as the method calculates the network reliability
analytically, it is equally computationally efficient across reliability
values. Throughout, the proposed PrPm achieves accurate estimates of
network reliability with orders of magnitude savings in computation
time. This enables accurate and computationally tractable reliability
assessments of larger, complex networks.
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