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Abstract: Critical infrastructure systems are deteriorating and experiencing increased cascading failures. In this paper, we propose a new
probabilistic framework for modeling interdependent infrastructure networks. As part of this framework, we present our modeling approach
and the accompanying sets of algorithms that enable the computationally efficient probabilistic modeling of large infrastructure systems con-
sidering interdependencies between networks. The proposed method creates a representative Bayesian network (BN) of the system, which
provides exact inferences over the network compared to simulation-based approximations. With the traditional computational limitations of
BNs to tens of parent component nodes per child system node, our generalized framework enables computationally efficient BN modeling of
systems of, for example, hundreds of component nodes, including component-level performance and interdependent connections across net-
works. Our approach requires only simple inputs based on the basic component characteristics of location, type, connectivity, and initial failure
probabilities. We modeled three types of interdependencies across the system—service provision, geographic, and access for repair. We com-
bined a minimum link set (MLS) formulation with the idea of supercomponents in order to reduce network complexity without any approxi-
mating assumptions. We present algorithms to efficiently identify MLSs and supercomponents, as well as to identify and remove any cyclic
dependencies that arise across the network. Once the BN was constructed, we were able to perform exact inference analyses over a range of
component state and hazard event scenarios in order to identify vulnerabilities across the network. Themain novelty of the paper is to enable the
probabilistic assessment of large, complex, interdependent infrastructure systems. We were able to consider performance from the component
level and model hundreds of component nodes in a computationally efficient manner without approximating assumptions. We accounted for
interdependencies between systems with exact inference results. The model can be used to investigate the potential for cascading failures and to
prioritize critical components for repair, replacement, or reinforcement. We applied the proposed methodology and algorithms to the water
distribution network in Atlanta, Georgia, and its dependencies with the power system. We validated the model using the results from a recent
interdependent outage event. DOI: 10.1061/(ASCE)CP.1943-5487.0000801. © 2018 American Society of Civil Engineers.

Introduction

Critical infrastructure systems, such as water, power, transporta-
tion, communication, and fuel networks, are deteriorating and
experiencing increased cascading failures. This is due to a combi-
nation of aging infrastructure components, vulnerability to natural
disasters, and susceptibility to organized attacks. For these reasons,
it is necessary to assess and improve the resilience of infrastructure
systems—“the ability to prepare for and adapt to changing condi-
tions and withstand and recover rapidly from disruptions” (White
House 2013). Cascading failures occur when a single infrastructure
component outage causes outages in other infrastructure systems
and components.

A quantitative method to assess infrastructure vulnerabilities is
necessary in order to improve resilience for communities and to
determine how to invest resources in order to reinforce and recover
infrastructure systems (Johansen et al. 2016). In the process, it is
also necessary to account for other networks on which certain

infrastructures depend. For example, each of the other fifteen criti-
cal infrastructure sectors defined by the White House (2013) con-
nect to the energy sector in some way. Power is necessary to operate
water pumps and treatment plants, maintain critical manufacturing
operations, support healthcare facilities, and control and operate
transportation systems. Because of these connections, the risk of
cascading failures across systems increases. An example occurred
during the blackout in the Northeast in 2003, when a tree contacting
power lines caused outages for approximately 50 million people
and led to disruptions in communication systems, public transit,
and water distribution systems (Lu et al. 2006).

In this paper, we present a new methodology that models multi-
ple infrastructure systems and the interdependencies that exist
between them using a probabilistic Bayesian network (BN) frame-
work. BNs account for uncertainty while enabling exact inference
over the network in contrast with approximate or bounded results
from simulation-based approaches. While BN modeling has tradi-
tionally been computationally limited to systems with tens of com-
ponent nodes per child system node, our generalized framework
enables tractable modeling of systems of, for example, hundreds
of component nodes, including component-specific information
and interdependent connections across networks. In this paper, we
describe the full approach and the set of algorithms that enable the
computationally efficient modeling of interdependent infrastructure
systems from the component level to the system-of-systems level
using the proposed framework. The main novelty of the contribu-
tion is to enable probabilistic assessment of large, complex infra-
structure systems. We were able to model hundreds of component
nodes in a computationally efficient manner without approximating
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assumptions, accounting for interdependencies between systems
with exact inference results.

The remainder of this paper gives a detailed description of
our methodology, including how the BN was constructed with re-
quired inputs, component connection models, and interdependency
definitions within the framework. We describe our approaches and
the accompanying algorithms we developed in order to address
challenges associated with the BN modeling of complex infrastruc-
ture systems. These include algorithms for minimum link set iden-
tification in infrastructure systems, supercomponent identification,
and defining nodes modeling different types of interdependencies.
These also include a method to identify and remove cyclic compo-
nent configurations within the network. The overall methodology
creates a computationally tractable probabilistic BN model of large
infrastructure systems considering interdependencies between net-
works. We applied the methodology to interdependent water and
power distribution systems in Atlanta, Georgia. We provide infer-
ence results from a historic cascading failure event for validation.
We compared the performance of the proposed methodology to
that of prior approaches. The main contribution of this work is
to provide a new framework for the probabilistic vulnerability
analysis of interdependent infrastructure systems, including mod-
eling methodology and algorithms for analysis. It provides a gen-
eralized method by which complex infrastructure systems can be
efficiently modeled, including their interdependencies, using BNs.
We were able to analyze systems from the component level and
obtain exact inference results in order to conduct detailed probabi-
listic assessments of these systems in order to increase reliability
and resilience.

Background and Related Work

Probabilistic Vulnerability Analysis of Infrastructure
Systems

Analyzing the vulnerability of infrastructure systems can be done
using empirical, agent-based, system dynamics-based, economic
theory-based, and network-based approaches (Ouyang 2014).
The approach used in this paper is a network-based approach, with
nodes and links that represent infrastructure components and the
connections between them, respectively. Network-based approaches
can be used to effectively prevent catastrophic effects, improve
absorptive capacities, and analyze the propagation of decisions
made on the network (Ouyang 2014). A network-based approach
was chosen because it allowed the use of a probabilistic, dynamic
analysis of interdependent infrastructure systems. Network-based
approaches also enable the evaluation of the ability of the inter-
dependent infrastructure networks to remain resilient in the face
of a hazard. Vulnerability studies have been performed using
network-based approaches in several ways—under random failures,
under natural hazards, and under intentional attacks (Ouyang 2016).
The methodology developed in this paper can be used for each of
these analyses based on the conditional probabilities that are input
for any type of hazard or disruption.

Bayesian Networks

Bayesian networks model systems in order to account for the
probabilistic dependencies between components and facilitate
the updating of system assessments with new information. A BN
is a directed (i.e., the edges are directional) and acyclic (i.e., no
closed path exists in the network) probabilistic graph composed
of nodes and links. Based on the dependency relationships between
components, nodes are defined as parent or children nodes.

Children depend on the states of their parents. Each node represents
a random variable and, for discrete networks, is defined by a condi-
tional probability table (CPT). The CPT consists of the conditional
probabilities of the states of the child node given the states of the
parents. Parent nodes are defined by their marginal probabilities.

In computing applications in civil engineering, BNs have been
used in several ways. One is to identify damage location on civil
structures using electromechanical (E/M) impedance (Naidu et al.
2006). In Naidu et al. (2006), BNs were used to reduce the amount
of input data needed for traditional damage identification methods,
which require large amounts of training data. Cheng and Hoang
(2016) probabilistically estimated slope stability using BNs in or-
der to calculate posterior probabilities of slope collapse without
requiring prior knowledge of data distributions. As they were in
these studies, BNs were useful in the approach described in this
paper because a large amount of input data was not necessary in
order to learn information about the network and to calculate prob-
abilities of failure of infrastructure components based on different
scenarios.

BNs have been used to model single infrastructure networks such
as inland waterway ports (Hosseini and Barker 2016), railway lines
(Castillo and Grande 2016), highways (Grande et al. 2017), and
power (Tien and Der Kiureghian 2017) and water networks (Leu
and Bui 2016). These studies did not consider interdependencies
between different networks. In Leu and Bui (2016), the BN nodes
were defined based on general properties of the water network
(e.g., pipe diameter and depth) and other factors that could affect
the water network (e.g., pipe corrosion and construction activities).
Hosseini and Barker (2016) built a BN model where resilience
metrics, such as backup utility systems and quick evacuation, were
nodes in the network. A BN was used to analyze the risk of domino
effects, similar to cascading failures, in chemical plant infrastructure
in Khakzad (2015). Nodes represented parts of fuel storage plants,
such as tanks, the states of which could be safe, on fire, or burned
out. The cascading failures modeled were in time slices by applying
a dynamic BNmodel. Similarly, a dynamic BN was used to evaluate
cascading effects in a power grid in Codetta-Raiteri et al. (2012).
In this study, electrical lines were considered as series or parallel
modules that connected nodes in the power grid.

BNs have also been used to model the security of interdependent
critical infrastructure (Schaberreiter et al. 2013). This approach used
service outputs and high-level system measurements as nodes in
the network. Aung and Watanabe (2010) similarly modeled inter-
dependent infrastructure systems using BNs at a very high level,
in which each node in the network represented an entire critical in-
frastructure sector. The BN was used to determine the cascading
effects of infrastructure sector outages. The critical infrastructure
BN model in Di Giorgio and Liberati (2011) also included nodes
representing services supplied and single nodes representing infra-
structure systems such as, for example, the electrical transmission
system as a whole, along with nodes representing adverse events.

Limitations of Prior Work

Compared to previous studies using BNs to model infrastructure
systems, our focus was on large, complex infrastructure networks,
accounting for the states of individual components of each system.
In studies where BNs have been used to model single infrastructure
networks, nodes in the BN were used to represent the properties
of a network and other global factors that affected the network.
By contrast, the approach in this paper used nodes to represent
the states of the individual components in the network and links
to represent the connectivity between them. In infrastructure net-
works, overall system states are governed by individual component
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states. Our approach enabled us to consider the states of specific
components whose performance impacted overall infrastructure
system performance. The resulting model can be used to analyze
diverse scenarios, including component-level events, with levels of
service outcomes measuring the resilience of the network under
different conditions. Previous single network approaches have
not considered interdependencies between the networks modeled
and other networks on which they depend.

Previous studies modeling the security of interdependent infra-
structure systems using BNs differ from the framework proposed
in this paper in that rather than modeling entire infrastructure systems
or the services provided as single nodes, our approachmodeled infra-
structures starting from the constituent components of a system. We
considered from the level of the individual infrastructure components
the topology and connectivity characteristics of infrastructure net-
works. In practice, this is the level at which the complex relationships
between systems, including the interdependencies between them,
arise. For example, the probability of being able to provide a service
at a distribution component is dependent on the number and reliabil-
ities of redundant paths, which are themselves composed of other
components, to that distribution point. For instance, for a water dis-
tribution system, the probability of being able to provide service at a
distribution component is also dependent on the reliability of the
power components supplying electricity for the water treatment
plants and pump stations.

In contrast with previous studies, each node in our BN model
represented an individual component of an infrastructure network.
This enabled us to capture component-to-component relationships
and to incorporate component-level information, such as updates
about component states from monitoring or inspection information,
into system assessments. In addition, decisions for infrastructure
systems occur at the component level—for example, decisions
about which component should have an additional backup or be-
tween which components a redundant path should be built. Our
proposed framework supports these component-level inferences.

The resulting analyses allow infrastructure owners to identify spe-
cific nodes (representing individual components) in the network
considered critical for replacement, repair, or additional buildouts
in order to increase overall system performance.

The methodology proposed used a BN-based approach to
capture probabilistic relationships between components and incor-
porate both prior information about the network and update
assessments when new information is learned about the network
(Johansen and Tien 2017). Prior information was incorporated dur-
ing construction of the BN. Updating information was incorporated
during inference of the BN. For example, if it was learned that a
certain hazard occurred on the system or that a certain component
failed, the new information was propagated to all nodes in the net-
work in order to calculate updated probabilities across all compo-
nent and system states.

The authors advance upon previous work (Johansen and
Tien 2017), which defined three interdependency types—service
provision, geographic, and access for repair—and propose a mod-
eling methodology for these three types. These interdependency
types were one element of the framework proposed in this paper.
However, many other elements were required to build the full
interdependent infrastructure system model in a computationally
tractable manner. The previous methodology was applied to three
components. This paper advances the approach to model an entire
network of interdependent infrastructure systems. The example ap-
plication was composed of hundreds of components. This study
focuses on computational methods and describes the proposed full
approach and accompanying algorithms to automatically model the
interdependent systems.

Methodology

Fig. 1 shows the overall methodology. In order to create the inter-
dependent infrastructure system model, we began with inputs of

Fig. 1. Flowchart of overall methodology.
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component locations, connectivity, types, and failure probabilities.
We considered a binary system in this case, in which components
could be in one of two possible states, i.e., failure or survival.
Therefore, failure probabilities were defined. The method easily
extended to systems of multiple states, such as those modeling flow
capacity (Tong and Tien 2017). In those cases, probability distri-
butions over all possible component states are defined.

We then reduced the dimensionality of the BN by using a mini-
mum link set (MLS) formulation combined with supercomponent
identification. Algorithms to do this in the context of infrastructure
systems are presented. Next, we specified the interdependencies
and constructed the BN, which included defining the adjacency
matrix, identifying and removing cycles in the graph, and defining
conditional probability distributions. We were then able to use the
resulting model to perform exact inference to probabilistically
assess the vulnerability of interdependent infrastructure networks.
We describe each of these steps of the methodology in detail in the
following sections.

Inputs

The construction of the BN was largely based on geospatial in-
formation about the interdependent infrastructure networks. We
assumed that any given infrastructure system is composed of
individual components whose performance contributes to the per-
formance of the overall network. The required inputs for the meth-
odology were component locations, connectivity, types, and failure
probabilities.

The first inputs necessary were the locations of all components
in the networks. For example, for a water distribution network,
locations include coordinates of supply components (water treat-
ment plants, pump stations, tanks, and reservoirs), pipe junctions,
and terminal distribution nodes. The locations provide information
on the components that provide infrastructure resources or services
to specific parts of the community. In addition, locations account
for the relation between components and hazards that were consid-
ered for risk assessments, because most hazards can be described
geospatially. For example, the distance from an earthquake fault
line can be computed based on the component locations. Any speci-
fication of locations is acceptable as long as the frame of reference
is the same across the networks and hazards.

The component connectivity inputs were expressed as pairs of
infrastructure components that were connected in an individual net-
work. For example, for a water distribution system, the connectivity
was provided as a list of the two system components that each pipe
connected. The connectivity inputs were translated into a connec-
tivity matrix composed of ones and zeros in which a value of one
signified that the components were connected and a zero signified
no connection.

Another input needed was the type of each component. There
were three component types considered in the methodology,
each corresponding with a different physical function within an in-
frastructure system. The first was supply components. These are
components that generate or output the resource that flows through
the network. For example, for a water distribution system, the
resource is water, and the supply nodes are water treatment plants,
pump stations, tanks, and reservoirs. The second type was distri-
bution components. These are endpoints in the network that distrib-
ute the infrastructure resource to customers or end users. These
can also be smaller distribution points such as small pumps or
power lines for water and power systems, respectively, which feed
individual houses or facilities. The final type was transshipment
components. These are intersections between several links in the
system that are not endpoints in the network. These enable the

infrastructure resource to be distributed more easily across the net-
work along multiple paths compared to having single flow paths.
The component type inputs were necessary to define the role of
each component within overall system functioning.

The final input was the failure probabilities for each component.
These were determined from empirical calculations, asset health
scores, or estimated probabilities from infrastructure owners or
other domain-specific experts. An example of empirical calcula-
tions is to use fragility curves to calculate failure probabilities given
a specific hazard (González et al. 2016). In other cases, infrastruc-
ture owners calculate failure probabilities for each component, such
as those corresponding with varying asset health scores.

If precise failure probability values cannot be determined, rel-
ative values can be used, particularly if a goal of the analysis is to
provide a comparative ranking and prioritization of system compo-
nents. These failure probabilities can also be updated when new
information is learned about the system. For example, if the results
of an inspection update the estimated probability distribution of the
state of a component, that information updates the prior failure
probability of the component, and through its connections, the
distributions of the states of surrounding nodes as well.

Dimensionality Reduction

With these inputs, we then reduced the dimensionality of the BN.
Previously, BNs have been used to model smaller systems of five to
ten components (e.g., Bobbio et al. 2001; Kim 2011). Algorithms
have been developed to use BNs to model and assess the reliability
of much larger systems (Tien and Der Kiureghian 2015, 2016) and
increase computational efficiency in conducting inferences for
critical infrastructure systems (Tien and Der Kiureghian 2017). We
used both a minimum link set (MLS) formulation and supercom-
ponent identification to decrease the dimensionality of the network
and make it computationally tractable for modeling systems of
hundreds of nodes.

In assessing the performance of a system, a minimum link set is
a minimum set of components that are required to be functioning in
order for the system to function. For a physical infrastructure sys-
tem, we defined a MLS as the components that must be working for
a resource, such as water, power, or gas, to be conveyed from a
source node to any other node in the network. If a single component
in the MLS fails, the MLS fails. For this application, MLSs linked
supply components to transshipment or distribution components.
They mapped paths through the network for providing infrastruc-
ture services to end points in communities. Algorithms to identify
MLSs for entire networks have not been found in the literature.
This can be done manually for small networks; however, this is
time consuming for networks of larger than 10 components.

Complementary to MLSs are minimum cut sets (MCSs). For
infrastructure networks, a MCS is the minimum set of components
that must fail for a resource to fail to be conveyed from a source
node to any other node in the network. Several algorithms have
been developed to identify MCSs in networks. One such algorithm
is EG-CUT, developed by Shin and Koh (1998). This algorithm
builds a MCS generation tree and backtracks from a leaf when
it fails to generate a MCS. However, this method does not enumer-
ate MLSs.

A robust, efficient algorithm to define the MLSs of the system
enabled us to capture the functionality of the network while reduc-
ing the dimensional complexity of the BN. It models the influence
of every combination of individual component states on overall
system performance through the MLSs. To define the MLSs, we
propose a recursive algorithm based on a depth-first search method
(Jiang et al. 2016). For large infrastructure networks, we also
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created a cutoff for the maximum size of a MLS, based on the logic
that a resource will not deviate far from the shortest path, in order
to increase computational efficiency. For example, water will not
weave through a grid in a network in order to travel between two
points on a single line.

The recursive MLS identification algorithm, presented as
Algorithm 1, is run for each pair of supply components and target
components, which include all transshipment and distribution
components in the network. Inputs to the algorithm are the start
component S, target component T, connectivity matrix Con, the
shortest distance DS from any supply component to the target com-
ponent of interest, and a matrix of the physical length L of all links
in the network. Unbolded italics denote scalar values; small bolded
letters denote vectors; capital bolded variables denote matrices.
A comparative distance DC is calculated to create a distance cutoff
for the maximum physical distance of the MLS using a multiplier
M. In the application example in this paper, the cutoff distance is
twice the shortest distance between the supply and target nodes,
i.e., M ¼ 2.

As the algorithm proceeds, it visits an increasing number of
components. Several variables are created during the recursion of
the algorithm. These include a visited vector ðVisÞ1×n of ones and
zeros the length of the number of components n that represents the
components that have been visited (one representing an unvisited
component and zero representing a visited node during the course
of the algorithm), a current path vector PC that represents the path
calculated within the recursive algorithm, and a current length
variable LC that represents the length of the current path.

Algorithm 1. MLS identification algorithm.
Input: S, T, Con, DS, L, M, Vis, PC, LC
Dc ¼ M · DS
VisðSÞ ¼ 0
PC ¼ ½PC; S�
Add length of link to length of current path LC
ch = unvisited connections in Con
If S ¼ T

MLS ¼ PC
Else for each element (i) in ch:

S ¼ chðiÞ
If LC > DC, break
newVis = Vis
newVisðSÞ ¼ 0
newPaths ¼ MLSalgðS;T;Con;newVis;PC;LCÞ

where S = supply node; T = target node; Con = connectivity
matrix for the network; DS = shortest distance from any supply
node to the target node; L = matrix of link lengths; M = multiplier
for maximum physical distance of MLS; Vis ¼ 1 × n vector of vis-
ited nodes, initiated as all 1s representing that all nodes are unvis-
ited; PC = vector of components in the current path of the MLS,
initiated as an empty vector representing that no nodes are yet
included in the path; LC = length of current path, initiated as 0 in-
dicating that the current path length is zero; and ch = vector of
children nodes of S found in Con not yet visited.

In the algorithm, first, a comparative distanceDc is calculated as
a multiplier M times the shortest distance DS. This step is per-
formed because it is not logical that a resource will take an exces-
sively long path if a much shorter path is available. The multiplier
used in the application in this paper is two, meaning that the longest
distance considered is two times longer than the shortest distance
from any supply node to the target node. Next, the start component

S is marked as visited in the visited vectorVis. The start component
is then added to the current path PC. Unless the current path only
contains one node, the length of the link added to the current path is
added to the current length LC. The children variable ch is defined
as the children of the start component S—found in Con—that have
not been visited as found in Vis. A MLS is discovered if the source
component is equal to the target component (S ¼ T) and is defined
as the current path PC. If an MLS is not found, the algorithm then
cycles through each element i of the child vector ch and sets the
child as the source component S. If the current path length LC is
greater than the cutoff distance DC, the algorithm moves on to the
next supply node. Otherwise, new variables are defined to move on
to the next recursion. The new visited vector is set as newVis and
the new start component is marked as visited. Finally, the algorithm
calls itself to repeat with the next S component until a MLS is
reached or the algorithm has visited all elements of the ch vector.

A second method for reducing the dimensionality of the net-
work is to use supercomponents (Der Kiureghian and Song 2008;
Tien 2017), which combine multiple components in order to model
them using a representative single node. One way to define a super-
component is as a subset of components in the system that are
connected in series or parallel (Tien and Der Kiuregian 2017).
Supercomponents reduce the effective number of nodes in the
BN while still representing the state of each node in the system
(Bensi et al. 2013). The components that comprise the supercom-
ponent are represented as parents of the supercomponent in the BN,
reducing the computational complexity of the model without
making any approximating assumptions.

For our algorithm, we defined a supercomponent when its state
was known given the failure of any one of its constituent compo-
nents. In this approach, components in a series configuration are
grouped into a supercomponent. Those components become pa-
rents of a supercomponent node in the BN. Algorithm 2, which
defines the supercomponents, uses only the connectivity matrix
Con and a vector of the supply components s as inputs. The algo-
rithm is as follows:

Algorithm 2. Supercomponent identification algorithm.
Input∶Con; s
For each transshipment and distribution component in the
network (i)

c ¼ Conði; ∶Þ
If s ∈= c and length of c ¼ 2

For each element of cðjÞ
If the length of Conðj; ∶Þ ¼ 2, supercomponent
identified

The algorithm loops over each nonsupply component i in the
network and defines the connection vector c as all components in-
dicated in the connectivity matrix with values of one. Supply com-
ponents are not included, because their functionality differs from
that of transshipment and distribution components. The algorithm
then selects connections in c that have exactly two connections,
representing a component in series. Finally, the algorithm loops
through all elements of the connection vector c and goes through
the same selection process to either add components to the current
supercomponent or to identify a new supercomponent.

Defining Interdependencies

In the modeling methodology, we included three comprehensive
interdependency types (service provision, geographic, and access

© ASCE 04018058-5 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2019, 33(1): 04018058 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
11

/0
2/

18
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



for repair) that affect the resilience of infrastructure systems.
These three interdependency types were used because they encom-
pass the possible connections between infrastructures and are well
defined compared to previous definitions of interdependencies
(Johansen and Tien 2017). For example, Rinaldi et al. (2001) de-
fined four types of interdependencies—physical, cyber, logical, and
geographic. In our framework, a service provision interdependency
refers to the function of a component in one system relying on the
function of a component from another system. This covers both
physical and cyber interdependencies as defined by Rinaldi et al.
(2001). An example of this is a water pump station requiring elec-
tricity from a power substation to function. If there is an outage at
the power substation, the water pump station will fail, particularly if
no backup power is present.

A geographic interdependency refers to the relationship be-
tween two or more components in the same geographic area that
are likely to experience similar effects given a local hazard. This
interdependency type is consistent with the geographic inter-
dependency defined by Rinaldi et al. (2001). For example, compo-
nents in proximity to one another are likely to fail concurrently if a
hazard occurs in their vicinity. It is common for gas and water lines
to be routed along the same roads so that only one trench is neces-
sary; this represents a geographic interdependency in which the two
lines are more likely to fail together given a common hazard.

An access for repair interdependency is defined for certain infra-
structures that must be functioning in order to gain cyber or physical
access to a failed component to repair it. For example, if a water
network component loses function, communication systems are nec-
essary in order to report the failure or gather information about the
event throughmonitoring systems. Transportation systemsmust also
be working so that repair crews can access the failed component.
This interdependency type was developed specifically to address
infrastructure resilience, taking into account systems necessary for
postdisaster recovery and restoration (Johansen and Tien 2017).
Rinaldi et al. (2001) defined a logical interdependency when the
states of two infrastructures each depend “on the state of the other
via a mechanism that is not a physical, cyber, or geographic connec-
tion.” We instead used the three explicit interdependency types of
service provision, geographic, and access for repair that can be quan-
titatively rather than subjectively modeled.

Previous work in identifying and accounting for interdependen-
cies in infrastructure networks includes Chou and Tseng (2010) and
Halfawy (2008). In Chou and Tseng (2010), failure records of dif-
ferent infrastructure types were used to predict interdependencies
through sequence-based failure events. Halfawy (2008) focused on
how to integrate management of multiple municipalities in order to
optimize asset management decisions over multiple infrastructure
types that may have different owners. Both of these approaches
could easily be integrated into our proposed framework. New in-
terdependencies learned or predicted could be added to the model
through the defined interdependency relationships in order to as-
sess potential cascading failures. The results from the models pre-
sented in this paper can be used across infrastructure owners to
address priorities in investment to mutually benefit multiple infra-
structure stakeholders. Another approach to analyzing infrastruc-
ture interdependencies is the inoperability input-output model.
This model analyzes how disruptions to one infrastructure system
propagate to other infrastructure systems through the exchange of
input and output resources that are transferred between systems
(Satumtira and Dueñas-Osorio 2010). These models are typically
applied to account for economic interdependencies between infra-
structure systems (Akhtar and Santos 2012; Santos et al. 2014).
If desired, nodes representing economic variables could be added
to our proposed framework, both at the component and system

levels. Here, we focused on the physical performance of the infra-
structure systems.

The next step in our methodology was to identify the interde-
pendencies that exist in the infrastructure networks being modeled.
We modeled each of the three comprehensive interdependency
types (service provision, geographic, and access for repair) affect-
ing the resilience of infrastructure systems.

To model a service provision interdependency, a direct link is
added from the supplying (parent) component providing the service
to the dependent (child) component. For example, to model the
dependency of a water pump station on power, a link is added from
the power substation to the water pump station. An assumption
made in building the BN was that that the closest supplying com-
ponent provides the resource to the dependent component (Dueñas-
Osorio et al. 2007). If other information on how resources are
supplied across infrastructure networks is available, that information
is easily incorporated into the BN through direct links between those
components. Child components can have multiple parents. For ex-
ample, water treatment plants often have feeds from multiple power
substations. In that case, each of the substations is represented as
a parent node. Components typically requiring a service provision
interdependency include natural gas and water supply components
that depend on power. Other components in each of these systems
do not require power in order to function. For example, water dis-
tribution components, particularly in older systems, can usually op-
erate without power. As systems become increasing automated,
however, service provision interdependencies will increase.

An example BN for a service provision interdependency is
shown in Fig. 2, in which the service provision interdependencies
are shown as dashed arrows. The example BN comprises a power
system of components C1p; : : : ;Cmp, where m is the number of
power components, and a water system of components
C1w; : : : ;Cnw, where n is the number of water components. The
MLSs are numbered MLS1; : : : ;MLSt, where t represents the
number of MLSs for the water network. Using the previous
example, each component, C p, represents a power substation and
C w represents a water pump station.

We model geographic interdependencies by grouping compo-
nents into zones. For each zone, we add a common hazard node,
which is a parent of all of the components in the zone. Hazard no-
des can be created for any set of components in order to capture
multiple hazard impacts. These include cyber nodes that represent
cyber threats on infrastructure systems, and natural disaster nodes
that represent earthquake or hurricane threats. Zones can be deter-
mined based on proximity to certain hazards, collocation of com-
ponents, or service areas around supply components. An example

Fig. 2. Example BN for service provision interdependency.
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of using proximity to a hazard is partitioning components based on
their distance from an earthquake fault line. An example of parti-
tioning components using service areas is using a k-nearest neigh-
bor search to group components by their closest supply nodes.

Fig. 3 shows an example BN for a geographic interdependency,
in which the dashed lines represent the geographic interdependen-
cies. Hazard zones are represented by Hazard1 to Hazards, where s
denotes the number of hazard zones. Components with the same
hazard parents are in the same hazard zone. In the example, com-
ponents C1p, C1w, Cðm−1Þp, and Cðn−1Þw are all in Hazard zone 1.

System nodes can also be created based on the geographic par-
titions that represent the resources provided to particular service
areas, which are used when performing inference on the system.
Each system node is a child of all of the components within that
system, such as those within a geographic partition.

When modeling an access for repair interdependency, the
change in the operational status of infrastructure components over
time is taken into account. Access nodes are created as parent nodes
of the components that depend on them. Access nodes only affect
the state of a child component in the case of component failure. A
working component is independent, for example, of the state of its
connected communication or transportation networks. Therefore, a
node representing the state of the component in its previous time
step is created, allowing the determination of the need to account
for the state of an access node. In defining the access nodes, for
cyber access, these nodes account for required communication with
the dependent component and the robustness of the communication
channels to disruptions. For physical access, the access nodes re-
present remoteness and redundancy in transportation paths to reach
the component. The probability of repair of a component given ac-
cess can be defined based on the criticality of the component or the
availability of resources for repair.

An example BN is shown in Fig. 4 with C1w as the potentially
failed node and the access nodes defined as a telecommunications
tower and road providing cyber and physical access, respectively.
The state of the water node in the previous time step is represented
by C1wprevious.

Adjacency Matrix

The structure of a BN is defined by an adjacency matrix. An ad-
jacency matrix is similar to a connectivity matrix, which is com-
posed of ones and zeros. In this case, a value of one indicates a
connection between a parent node in a row and a child node in

a column, and zero indicates no connection. In addition, rather than
merely capturing the original network topology with components
as in a connectivity matrix, the adjacency matrix includes the de-
fined MLSs, supercomponents, and interdependency relationships.
The adjacency matrix also accounts for the directionality of the
dependency and is not symmetric. The adjacency matrix was con-
structed based on the parent–child relationships defined in previous
steps. For MLSs in particular, each component that comprises an
MLS is a parent of an MLS node, and each MLS node is a parent
of the component for which it is an MLS, providing the paths for
a resource to reach a component. This functional relationship in-
troduces potential cycles into the graph. The method to address
these cycles is presented in the following section.

Cycles

In the modeling and assessment of complex infrastructure systems,
it is possible for cycles to arise in the creation of the BN graph.
For example, suppose component C1 in the water network, denoted
C1w, is a part of a MLS for component Cnw. Suppose at the same
time that, based on the topology of the network, Cnw is a part
of a MLS for component C1w. With these two components each
a part of the other’s MLSs, a cycle is introduced. BNs, however,
must be acyclic graphs. Typically in such a case, the system would
no longer be able to be modeled as a BN. We developed a method to
identify and remove cycles from the BN (discussed subsequently)
and account for the dependency that cycles introduce (also dis-
cussed subsequently).

An example of a cycle that arises from MLS formulation is
shown in Fig. 5, in which component C1 is part of the MLS2
for C2 and C2 is included in MLS1 for C1. Here we present a
method to remove the cycles in the graph while retaining the
dependency relationships between the nodes. Specifically, we

Fig. 3. Example BN for geographic interdependency.

Fig. 4. Example BN for access for repair interdependency.

Fig. 5. Example BN with cyclic dependency.
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defined the components by their joint probability distribution and
removed one of the links from a component to a MLS, removing
the cycle. In the example, we removed the link from C1 to MLS2
(shown by the dotted line). The joint probabilities were calculated
by considering the possible configurations of each component state
and using total probability to calculate the remaining values. This
calculation is further described in Algorithm 3, which is presented
subsequently, to define the MLS conditional probability tables.

In this step, we must identify all cycles in the graph. We do this
by traversing the graph represented by the adjacency matrix and
identifying when the path traversed reaches a previously visited
node. This represents a cycle in the graph. Once the cycle is iden-
tified, a link from a component to a MLS node is removed in the
adjacency matrix.

When traversing the graph, we begin with component Ci. A vis-
ited vector is constructed as [Ci]. The graph traverse algorithm then
moves to Ci’s connections—in this case, MLS1. The visited vector
is now [Ci, MLS1]. This continues, traversing to each connection
until we reach [Ci, MLS1, C1, MLS2, C2, MLS1]. In this step, a
node in the visited vector is repeated, indicating a cycle. Thus,
we remove a link in the adjacency matrix, in this case the link from
C1 to MLS2, by setting that entry to zero. We note the removed link
to define the conditional probability distribution in the next step.

Defining Conditional Probability Tables

Each node in the BN must be defined by a conditional probability
distribution of its state given the states of its parents, typically
represented for discrete or discretized variables in a conditional
probability table. The calculation of the CPT varies for each
node type. Details for the CPT calculation for nodes defining geo-
graphic interdependencies, access for repair interdependencies,
supply components including service provision interdependencies,
transshipment and distribution components, and MLSs both non-
cyclic and cyclic are provided in this section

Geographic Interdependency Nodes
When defining the geographic interdependency in the network,
hazard nodes and zone nodes are created that represent compo-
nents in the same physical area that are likely to experience cor-
related outcomes in the case of a hazard. Hazard nodes do not
have parent nodes, so their CPTs are defined as the marginal prob-
abilities of hazard occurrence, as shown in Eq. (1), where Hi,
i ¼ 1; : : : ; nH represents a hazard node and nH is the number
of hazard zones. The probability of occurrence of hazard Hi is pHi

PðHi occursÞ ¼ pHi

PðHi does not occurÞ ¼ 1 − pHi
ð1Þ

To assess the overall performance of the infrastructure systems,
we evaluate levels of service provided in each service area in the
community. We use zone nodes to represent these service areas;
the parents of zone nodes include all of the nodes within the
zone. Eq. (2) defines the CPTs for zone nodes, where Zj, j ¼
1; : : : ; nZ represents a zone node and nZ is the number of zones.
The components within each zone are represented by Ck

Zj
, k ¼

1; : : : ; nZj
, where nZj

is the number of components in zone Zj.
In Eq. (2), the percent level of service is denoted as N. A zone’s
level of service is defined as the percentage of components that are
in the working state within the zone’s partition

PðZj is atN% ServiceÞ

¼
�
1 if N% of Ck

Zj
; k ¼ 1; : : : ; nZj

survive

0 otherwise
ð2Þ

Access for Repair Interdependency Nodes
Access nodes are created when defining access for repair interde-
pendencies. We define these for all supply, transshipment, and
distribution components in the networks that depend on them
for repair. Eq. (3) defines a component CPT when it has an access
node as a parent, where Cm denotes the component, as accm
denotes the access node, and Cmprev denotes the component’s state
in the previous time step. The probability of failure of component
Cm is pfm . The probability of repairing component Cm is defined
as prepairm

PðCm survivesÞ ¼

8>>>><
>>>>:

1−pfm if accm survives andCmprev survives

1−pfm if accm fails andCmprev survives

prepairm if accm survives andCmprev fails

0 if accm fails andCmprev fails

PðCm failsÞ ¼

8>>>><
>>>>:

pfm if accm survives andCmprev survives

pfm if accm fails andCmprev survives

1−prepairm if accm survives andCmprev fails

1 if accm fails andCmprev fails

ð3Þ

Supply Components
In defining CPTs for supply components, the parent nodes of
supply components typically include hazard nodes and service pro-
vision interdependency nodes. Eq. (4) represents the CPT formu-
lation for supply nodes. The supply node is represented by Sq,
q ¼ 1; : : : ; nS, where nS is the number of supply nodes. The condi-
tional probabilities of component failure given that a hazard occurs
or does not occur are represented by pfqjhaz and pfqjno haz , respec-
tively. The hazard node of which the supply component is a child
is represented by Hi, and the service provision interdependency
parent is represented by Rs

PðSq survivesÞ ¼

8>>>><
>>>>:

1−pfqjhaz ifHi occurs andRs survives

0 ifHi occurs andRs fails

1−pfqjnohaz ifHi doesnot occur andRs survives

0 ifHi doesnot occur andRs fails

PðSq failsÞ ¼

8>>>><
>>>>:

pfqjhaz ifHi occurs andRs survives

1 ifHi occurs andRs fails

pfqjnohaz ifHi doesnot occur andRs survives

1 ifHi doesnot occur andRs fails

ð4Þ

Transshipment and Distribution Components
Transshipment and distribution components have MLSs and
hazard nodes as parents. Eq. (5) shows the CPT formulation for
transshipment and distribution components. The components are
represented by the variable Ct, t ¼ 1; : : : ; nd, where nd is the
number of nonsupply components. The MLSs that are parents
of the component are represented by MLSdv, v ¼ 1; : : : ; nM,
where nM is the number of MLS parent nodes of component
Ct. In Eq. (5), the component is also a child of a single hazard
node Hi. The conditional probabilities of component failure given
that the hazard occurs or does not occur are represented by pftjhaz
and pftjno haz , respectively

© ASCE 04018058-8 J. Comput. Civ. Eng.
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PðCt survivesÞ ¼

8>>>><
>>>>:

1 − pftjhaz if Hi occurs and anyMLSdv survives

1 − pftjno haz if Hi does not occur and anyMLSdv survives

0 if Hi occurs and noMLSdv survive

0 if Hi does not occur and noMLSdv survive

PðCt failsÞ ¼

8>>>><
>>>>:

pftjhaz if Hi occurs and anyMLSdv survives

pftjno haz if Hi does not occur and anyMLSdv survives

1 if Hi occurs and noMLSdv survive

1 if Hi does not occur and noMLSdv survive

ð5Þ

Minimum Link Set Nodes
The functioning of an MLS depends on the functioning of the com-
ponents in the MLS. Therefore, the parents of the MLS nodes are
the components that comprise the MLS. However, there are two
types of MLSs—those without cyclic links and those with cyclic
links that have been removed. The formulations for the CPTs
for MLSs in these two cases are described subsequently.

Eq. (6) shows the CPT formulation for MLSs that did not con-
tain cycles, and therefore do not contain links that have been re-
moved with the cycle removal algorithm. The MLS nodes are
represented by MLSw, w ¼ 1; : : : ; nMNC

, where nMNC
is the number

of noncyclic MLSs. The components comprising the MLS are
denoted Cwx

, x ¼ 1; : : : ; nwx
, where nwx

represents the number
of components in MLSw

PðMLSw survivesÞ ¼
�
1 if allCwx

survive

0 if anyCwx
fails

PðMLSw failsÞ ¼
�
0 if allCwx

survive

1 if anyCwx
fails

ð6Þ

For MLSs containing cycles and, therefore, links that have been
removed during the cycle identification process, the CPTs defined
for the MLS nodes must account for the removed links. This is done
using values from the joint probability distribution of the nodes for
which links have been removed. Let the cyclic MLSs be denoted
MLSa, a ¼ 1; : : : ; nMC

, where nMC
is the number of cyclic MLSs.

The components that comprise an MLS are denoted Cab ,
b ¼ 1; : : : ; nab , where nab represents the number of components
in MLSa. The removed links for each MLS are represented in
Lrem, a y × 2 matrix in which y is the number of removed links
for a specific MLS, and each row represents the parent to child link
that was removed. Each removed link is defined as Lremz

,
z ¼ 1; : : : ; y. The conditional probabilities of failure of components
Cab given that a hazard occurs or does not occur are represented by
pfbjhaz and pfbjno haz , respectively. The probability of a hazard occur-
ring is pHi

, and the joint probability value calculated for use in the
CPT is pMLScyc. The probability of failure of the link that is re-
moved is calculated as the product of marginal failure probabilities
of the parents of Lremz

. The algorithm for formulating the CPT for
MLSs with cyclic links is presented in Algorithm 3 as follows:

Algorithm 3. Algorithm for cyclic MLS CPT formulation.
For each row z in Lrem:

Parents of Lremz
are components corresponding to 1 values in adjacency matrix in row Lremz

PðLremz
failsÞ ¼

Ynab
b¼1

½pfbjhaz · pHi
þ pfbjno haz · ð1 − pHi

Þ�

pMLS cyc ¼
Xy
z¼1

PðLremz
failsÞ − X

1≤c<d≤y
PðLremc

failsÞ ∩ PðLremd
failsÞ

þ
X

1≤c<d<f≤y
PðLremc

failsÞ ∩ PðLremd
failsÞ ∩ PðLremf

failsÞ− · · ·

þ ð−1Þn−1½PðLrem1
failsÞ ∩ : : : ∩ PðLremy

failsÞ�

PðMLSa survivesÞ ¼
�
1 − pMLScyc if allCab survive

0 if anyCab fails

PðMLSa survivesÞ ¼
�
pMLScyc if allCab survive

1 if anyCab fails

Once the CPTs for all nodes are defined, the BN model can be built.
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Application

To demonstrate the proposed framework and our approach, we ap-
plied it to the interdependent water and power distribution networks
in Atlanta, Georgia. We modeled the system and performed infer-
ence on the network using the model. We validated the methodol-
ogy by comparing the results from inference using the constructed
model to a real-world scenario in which a power outage led to
cascading failures in the water system.

System Overview

For the water system, we analyzed pipes greater than or equal to 18
inches in diameter. This included 112 components, seven of which
were supply stations and 105 of which were transshipment or
distribution nodes. There were 244 links, or pipes, in the network.
For the power system, we modeled the power substations that were
located at each supply node. Supply nodes had between one and
three electrical feeds, varying with each supply component.

Fig. 6 shows the system with supply nodes shown as empty
circles and distribution and transshipment nodes shown as solid
points. The supply nodes are also the locations of the power
components.

Bayesian Network Model

We then used the proposed framework to create the BN model of
the interdependent infrastructure systems.

Inputs
The input file was 4 MB and included identification numbers and
locations of 112 junctions in the water network. The start and end
junctions and size characteristics of 350 pipes were included. The
junctions were condensed to represent the start and end junctions of
each pipe rather than accounting for all on-pipe junctions.
Component Locations. The component locations were given as
state-plane coordinates in the example.
Component Connectivity. The component connectivity for the
application was obtained from a list of each link in the network
used in the hydraulic model of the system.

Component Type. The component types for the application were
defined depending on their function, i.e., supply, transshipment,
or distribution. The constituent elements of supply nodes, i.e., for
pump stations and treatment plants, were aggregated into a single
node for each supply. If such element-level information is available,
it can easily be incorporated into the model as parents of the supply
node. Supercomponent identification can be utilized to reduce
dimensionality as needed.
Component Failure Probability. For the application, component
failure probabilities were assumed to be consistent across each
component in order to better assess relative component vulnerabil-
ities. The failure probabilities given that a hazard occurred or did
not occur were assumed to be 1 × 10−2 or 1 × 10−4, respectively.
The hazard in the example was generalized and could, for example,
represent a storm. The equal prior failure probabilities across com-
ponents resulted in ranking and component prioritization rather
than specific failure probability values. If more information is
learned about the components, the failure probabilities can easily
be updated as inputs to the model.

Dimensionality Reduction
Running Algorithm 1 for the full system identified the MLSs from
a supply node to each of the transshipment and distribution nodes in
the network. This took approximately 2.19 s on a computer with
4 GB RAM and a 1.3 GHz Intel Core i5 processor using MATLAB
2017b for the entire network. This was a novel algorithm to identify
MLSs, because none were found in previous literature. There were
246 MLSs in the full system. The maximum number of MLSs
for a component was 5 and the maximum length of an MLS was
17 components. An example set of MLSs for node C7 is

�
C108; C58; C59; C7

C108; C60; C59; C7

�

where the first component in each row is a supply node and the
middle nodes are on the path to the final node. Supercomponents
were not needed for this example.

Defining Interdependencies
The interdependencies modeled in the application were service pro-
vision and geographic. Service provision interdependencies were
based on information provided by the owners of the water network.
There were power substations located at each of the water supply
stations. Each supply station had between one and three power sub-
stations. To model the service provision interdependencies, direct
links were added from each power substation to the water supply
node that it supplied. Backup generators could also be incorporated
to account for continued power in the case of an outage of a main
substation. There were a total of 15 power substations in the
network that provided power to seven water supply nodes.

We partitioned the water and power networks into hazard zones
that were used to represent geographic interdependencies. These
hazard zones also represented service areas surrounding each of
the water supply nodes. The seven zone partitions for the network
are shown in Fig. 7.

Four of the service areas were split into two groups for ease of
computation during inference. Therefore, in total, there were 11 par-
titions with hazard nodes as parents for the nodes in each of them.
Nodes were also created as children of the distribution nodes in each
zone, representing levels of service in each service area.

Adjacency Matrix
We build the adjacency matrix from identified MLSs and inter-
dependency relationships between nodes. Each MLS was a
parent of its dependent component node, and the components thatFig. 6. Atlanta water and power distribution systems.
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comprised each MLS were parents of the MLS node. Links created
by service provision interdependencies included defined parent and
dependent children nodes. Geographic interdependency links in-
cluded those from a hazard node to each node in the hazard zone,
as well as links from each distribution component in a zone to
the service level nodes used for posterior inference. There were
1,868 parent–child relationships defined in the adjacency matrix.
The Bayes Net Toolbox (version 1.0.4) (Murphy 2001) was used
to construct and perform inference in MATLAB. This toolbox re-
quired the components to be sorted topologically from parent to
child nodes. The sorting and construction of the adjacency matrix
took approximately 1.26 s.

Cycles
Defining all MLSs and parent–child relationships for the example
system created 52 cycles in the network. We used the graph traverse
algorithm to first identify these cycles and then remove one of the
links from a component to a MLS for each cycle. This removed the
cycles from the network in a negligible amount of time.

Defining Conditional Probability Tables
Overall, the definition of conditional probabilities took about
62.6 s. This built CPTs for each of the 392 nodes in the BN.
The minimum CPT size was 2 × 1 (for hazard nodes). For nodes
with n parents, the size of the CPT was 2 × 2 × nþ 1.
Geographic Interdependency Nodes. The probability that a
hazard occurs was assumed to be 0.01. This was for generalized
hazards and can be changed to the probability of occurrence of
any specific hazard of concern. As an example, the CPT for service
zone 1 was

PðZ1 is atN%ServiceÞ ¼
�
1 if N% of Ck

Zj
; k ¼ 1; : : : ; 12 survive

0 otherwise

where CZ1
¼ C8; C9; C10; C11; C12; C13; C14; C15; C16; C17;

C18; C19. All transshipment and distribution components in
zone 1 are included in CZ1

. The CPT in this example was
2 × 2 × 13.
Supply Components. The CPT for an example supply component,
C108, is given in Table 1. In Table 1, H9 indicates the hazard in its
zone partition; R1 and R2 are the two power substations that supply
C108; and S and F denote survival and failure, respectively, of the
substations.

Transshipment and Distribution Components. The CPT for
an example transshipment or distribution component, C99, is pre-
sented in Table 2. In Table 2, H3 indicates the hazard in its zone
partition. In this example, componentC99 has only oneMLS parent,
and S and F denote survival and failure, respectively, of the MLS.
Minimum Link Set Nodes. An example of the CPT for a noncyclic
MLS, MLSC701 is given in Table 3, where CMLSC7011

is C111 and

CMLSC7012
is C91; these are the two nodes that comprise MLSC701.

An example of the CPT for a cyclic MLS, MLSC663 , is given in
Table 4. In this example, the link that was removed was from C3
to MLSC663. Therefore, the remaining parent of MLSC663 was
CMLSC6631

, which represents C110. The probability that C3 survives

was calculated from Algorithm 3.

Output
Fig. 8 shows the overall BN model. The hazard nodes are
denoted Hazard1; : : : ;Hazard9. These are parents of the power
and water components and represent the geographic interdepen-
dencies. The power supply components are denoted
Power Supply1; : : : ; Power Supply15. These are parents of water
supply components, representing service provision connections.
Water supply components are denoted Water Supply1; : : : ;
Water Supply7, and water distribution components are denoted
Water Distribution1; : : : ;Water Distribution105. Water distribution
components are parents of zone partitions Zone1; : : : ;
Zone9, which represent levels of service throughout the network.
Both water supply and distribution components are parents of

Fig. 7. Service areas partitioned by zone for application network.

Table 2. CPT for example distribution component, C99

C99

H3 occurs H3 does not occur

MLSC991S MLSC991F MLSC991S MLSC991F

Survives 0.99 0 0.9999 0
Fails 0.01 1 0.0001 1

Table 3. CPT for example noncyclic MLS, MLSC701

MLSC701

CMLSC7011
S CMLSC7011

F

CMLSC7012
S CMLSC7012

F CMLSC7012
S CMLSC7012

F

Survives 1 0 0 0
Fails 0 1 1 1

Table 4. CPT for example cyclic MLS, MLSC663

MLSC663 CMLSC6631
S CMLSC6631

F

Survives PðC3 survivesÞ 0
Fails 1 − PðC3 survivesÞ 1

Table 1. CPT for example supply component, C108

C108

H9 occurs H9 does not occur

R1S R1F R1S R1F

R2S R2F R2S R2F R2S R2F R2S R2F

Survives 0.99 0.99 0.99 0 0.9999 0.9999 0.9999 0
Fails 0.01 0.01 0.01 1 0.0001 0.0001 0.0001 1

Note: F = failure; and S = survival.

© ASCE 04018058-11 J. Comput. Civ. Eng.
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MLSs denoted Water MLS1; : : : ;Water MLS246. MLSs are parents
of the distribution components that they supply. The subscripts
represent the number of nodes of each type in the network; the
BN comprised 382 total nodes.

Validation

We validated the model using a real-world scenario of cascading
failures due to the interdependent nature of infrastructure networks
that occurred in both 2014 and 2017. In these instances, a water
pump station lost power from both of its dual feeds and caused
outages throughout Atlanta’s downtown area. The water system

lost pressure in both cases and a boil water advisory became nec-
essary. To test the scenario with the model, we simulated an outage
to the power components supplying the affected pump station. The
resulting network showed outages throughout the downtown area,
as shown in Fig. 9. This was consistent with the outcomes of the
event in which the downtown area lost water pressure. We used the
loss of water pressure as an indicator for failure at the distribution
level in the example. The BN model included all the complexities
of the functionality and interdependencies of the networks, and
showed the effects of the outage directly.

Example Inferences

With the BN model built, varying inferences could be conducted
over the networks. The validation scenario above is an example
of assessing the impacts of a service provision interdependency,
in which the power supply of a water pump station failed and caused
cascading outages in the water system. Examples of other probabi-
listic vulnerability analyses include assessing the impacts of hazards
occurring in specific zones—geographic interdependencies—
or evaluating the effects of failures within the water system itself.

Fig. 10 shows inference results from a hazard occurring in
hazard zones 1 and 2. The gradient on the right represents failure
probabilities. Hazard zones 1 and 2 are in the upper right corner
of the system, so components in that area experienced increased
probabilities of failure. Because the supply nodes were distributed
throughout the rest of the network, no additional outages were
experienced due to this event scenario.

Another example of inference is to assess the effects of an ob-
served outage or the failure of a specific component in the network.
Inference over the BN updates the failure probabilities of all nodes
throughout the network. Fig. 11 shows the results from learning
that a large supply component in the bottom right area of the net-
work has failed. The figure shows the effects of such an outage on
the ability to provide service in that part of the network.

These inferences were performed to highlight the abilities of the
proposed framework. The results shown are a small subset of in-
formation that can be gained from the interdependent infrastructure
model. The model allows a user to input information across a wide

Fig. 8. Overall BN model of Atlanta water and power distribution networks.

Fig. 9. Atlanta outage scenario for validation.
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range of possible scenarios—for example, outages that are experi-
enced or expected, hazard occurrences, or updated information on a
component such as failure, retrofit, or replacement. The user can
then visualize and observe the updated probabilities of failure in
components throughout the network. The aforementioned infer-
ences were performed in approximately 4 s each. The output was
achieved in a computationally efficient manner and was based on a
full representation of the network, including the performance of its
constituent individual components and the interdependencies that
exist across systems.

Performance Compared to Prior Approaches

To further assess the performance of the proposed methodology, we
compared it to that of prior approaches in several steps of the frame-
work. The MLS enumeration took 2.19 s using the proposed
method. While there were no previous algorithms found in the lit-
erature to identify these MLSs, an algorithm was developed to
enumerate the complement to MLSs, MCSs. Mishra et al. (2015)
proposed an algorithm to identify MCSs that used the connectivity
matrix of a graph to check the connection between nodes in a net-
work as nodes are progressively removed. The largest system that
this algorithm was tested on in the study contained 21 nodes and 26
links. The enumeration of the MCSs took approximately 2,600 s.
This was over 1,000 times longer for a network that was approx-
imately five times smaller than the application used in this paper.
The MLS formulation we have presented allows us to expand the
number of components that are included in the network with in-
creased computational efficiency compared to other methods of
identifying minimum sets in a network.

Prior approaches to modeling interdependent infrastructure sys-
tems using BNs have focused on network characteristics at the
global level rather than including system topologies from the com-
ponent level to study system reliability and prioritize repair and
retrofit for components. Therefore, the inference examples in this
paper are not comparable to works such as Aung and Watanabe
(2010) and Di Giorgio and Liberati (2011). A BN approach without
MLS formulation was explored by Schaberreiter et al. (2013).
However, that study applied to a system of four infrastructure com-
ponent nodes and four service nodes. The approach was not scal-
able to infrastructure systems of the size we were interested in for
this paper or the network used in the application.

Finally, we compared the performance of the proposed method-
ology to results from Monte Carlo simulation. Samples of proba-
bilities of failure for each component were selected based on hazard
occurrence using the same probabilities as described in the appli-
cation for the proposed model. The failure or survival of each com-
ponent was used to update the survival or failure of each MLS.
These updated MLSs were then used to update the survival or fail-
ure of the nodes that depended on them. The outcome was the prob-
ability of survival of each component node. The Monte Carlo was
performed using 103, 104, 105, and 106, and 107 simulations. The
calculated probabilities of survival of all components are shown in
Fig. 12. The solid circles represent the probabilities of survival of
each component calculated using the proposed framework. These
are the exact solutions. The open diamonds, circles, squares, and
triangles and represent the probabilities obtained from 103, 104,
105, and 106 simulations, respectively, and ×s represent those ob-
tained from 107 simulations. The computation times required for
each method and the average percent errors over all components
are presented in Table 5. As expected for Monte Carlo, the error
decreased with an increase in the number of simulations. However,
the average errors decreased slowly as the order of magnitude

Zones with 
simulated hazard

Fig. 10. Inference results from hazard occurrence in Zones 1 and 2.

Failed supply node

Fig. 11. Inference results from supply node failure.
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of the number of simulations increased. The computation time for
107 simulations was much higher than the proposed approach and
also required a large amount of memory, with a 112 × 107 matrix
representing the state of each component for every simulation.
Results from the simulation approach did not capture the small dif-
ferences in failure probabilities that the exact solutions obtained
using the proposed method provided. The errors were significant
given the importance of detailed granularity in the probabilities
of survival in the results, particularly if they are to be used to rank
component criticality in the interdependent network.

Conclusion

We have developed and validated a new generalized framework
to perform probabilistic vulnerability analyses of interdependent
infrastructures. In this paper, we have presented the proposed
approach, including algorithms to construct a BN model of the
interdependent infrastructure systems. The method results in com-
putationally efficient modeling and analysis of large infrastructure
networks with exact inference possible over any number of system

states. Inference over the network enables scenario-based analyses
and prioritization from the component level for repair, replacement,
or reinforcement decisions. This is useful before hazards occur in
order to assess where the greatest extent of damage is possible and
how to invest resources to prevent large outages. The model is use-
ful during hazards in order to determine where to dispatch resources
and repair crews to bring the most customers or the most critical
customers back online as quickly as possible. Finally, the model is
useful after hazards in order to prioritize components for interven-
tions to prevent similar incidents and impacts from occurring again
in the future.

The BN formulation accounts for uncertainty within the system
as well as the complex interdependencies between different infra-
structure systems. Uncertainties in both individual component
failure probabilities and the probabilistic connections between
components are included in the model. Only simple inputs of the
basic component characteristics of location, type, connectivity, and
initial failure probabilities are required. Dimensionality reduction
algorithms, including for minimum link sets, supercomponents,
and cycle identification, allow the model to include hundreds of
component nodes while remaining computationally efficient and
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Fig. 12. Comparison of results from proposed methodology to Monte Carlo simulations.

Table 5. Comparison of performance of proposed methodology to Monte Carlo simulations

Result Proposed 103 simulations 104 simulations 105 simulations 106 simulations 107 simulations

Time (s) 88.66 0.17 0.67 5.31 55.49 3,684.67
Average error (%) 0 5.49 4.36 4.18 4.14 4.13
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without requiring any approximating assumptions. The proposed
modeling approach and framework for analysis enable us to create
more reliable and resilient networks by understanding where
vulnerabilities exist within systems and the areas in which the
investment of resources will lead to the greatest improvements in
predicted system outcomes.
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Notation

The following symbols are used in this paper:
a = instance of cyclic MLS;

accm = access node m;
Cab = components that comprise a cyclic MLS;
Con = connectivity matrix;
Cm = component with access node as parent;

Cmprev = component with access node as parent’s state in
previous time step;

Ct = transshipment or distribution component;
Cwx

= components comprising MLSw;
Ck

Zj
= components within zone Zj;

ch = unvisited children nodes of start component in Con;
DC = comparative cutoff distance;
DS = shortest distance from any supply component to

target component of interest;
H = hazard node;
i = current element;
j = current zone number;
L = matrix of physical length of links in the network;
LC = current length;

Lrem = matrix of removed links;
M = multiplier;

MLSa = cyclic MLSs;
MLSdv = MLSs that are parents of component Ct;
MLSw = MLS node;

N = percent level of service;
n = number of components in the network;

nab = number of components in MLSa;
nd = number of transshipment and distribution

components;
newVis = new visited vector in recursive algorithm;

nH = number of hazard zones;
nM = number of MLS parent nodes of component Ct;
nMC

= number of cyclic MLSs;
nMNC

= number of noncyclic MLSs;
nS = number of supply nodes;
nwx

= number of components in MLSw;
nZ = number of zone nodes;
nZj

= number of components in zone Zj;
PC = current path vector;
pfm = probability of failure of component Cm;

pfqjhaz = probability of failure of component q given a hazard
occurs;

pfqjno haz = probability of failure of component q given a hazard
does not occur;

pHi
= probability of occurrence of hazard Hi;

pMLScyc = joint probability value calculated for the cyclic
MLSs;

prepairm = probability of repair of component Cm;
q = instance of supply component;
Rs = service provision interdependency parent;
S = start component;
Sq = supply component q;
s = vector of supply components;
T = target component;
t = instance of transshipment or distribution component;

Vis = visited vector;
v = instance of MLS for a specific component;
w = instance of MLS node;
x = instance of component in MLS;
y = number of removed links;
Z = zone node; and
z = instance of removed link.
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