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Abstract: As data for monitoring the natural and built environments become increasingly prevalent, integrating information from varied
data sources offers a fuller understanding of the impacts damaging events have on surrounding communities. In this paper, the authors
present a probabilistic framework to integrate data from multiple sources to estimate disaster and failure events. The authors show how
utilizing data from disparate sources, including physical sensors measuring environmental quantities and big data from social sensors
reporting personal accounts and public perceptions within a community, contributes to increasing situational awareness during an event.
The approach uses Bayesian updating to infer updated probabilities of event occurrence based on collected data and focuses on data fusion
within first individual sensor networks and next across unrelated sensor types. The framework is flexible and applicable to estimate events in
a variety of systems and environments using multiple, heterogeneous data sources. The authors apply the approach to estimate flood risks in
Louisiana during a 4-d period in August 2016 by integrating physical sensor data from the United States Geological Survey and social media
data from Twitter. The results show the change in estimated flood risks across the state as additional data is introduced and how multiple data
sources increase the amount of updating possible in real-time event estimation. DOI: 10.1061/AJRUA6.0000995. © 2018 American Society
of Civil Engineers.

Introduction

For a community, situational awareness during disasters is the abil-
ity to collect and synthesize available information to fully under-
stand vulnerabilities during times of crisis (Ireson 2009; Vieweg
et al. 2008). This real-time and dynamic awareness of a com-
munity’s surroundings is essential to support decision-making for
response and mitigation of disaster and failure events and is criti-
cal for ensuring public safety and minimizing economic losses.
Elements of these surroundings—both of the natural and built
environments—can be difficult to estimate with uncertainties in
hazards, responses, and impacts, and with continuous evolution in
time. By better understanding the current state of the environment,
a community can increase its absorptive capacities to improve its
resilience to disaster events (Johansen et al. 2017).

Fast, accurate, and comprehensive monitoring of the natural and
built environments is one way to do this. Physical sensors for mon-
itoring these environments have increased capabilities as their tech-
nologies advance. Unfortunately, physical sensors lack widespread
deployment in all communities, and data across available sensor
networks is not always integrated to create a complete representa-
tion of potentially damaging conditions or events. At the same time,
the rise of the web and social media has unlocked opportunities for

gathering large amounts of information, observations, and opinions
from the crowd in real time. Recent research has investigated the
use of these social sensors to detect disaster events, e.g., Tien et al.
(2016), Musaev et al. (2015), Vieweg et al. (2010), and Yin et al.
(2012). Big data from social media is inherently noisy and unre-
liable, so discerning useful information from it can be difficult.

Variation in sensor types and the unique challenges associated
with data analysis for each type must be considered to form a
coherent view of a disaster or failure event from multiple sensor
sources. In this paper, the authors present a probabilistic framework
for integrating data from multiple and varied sensor types to esti-
mate disaster and failure events. Such integration has the potential
to improve situational awareness by providing more comprehensive
and up-to-date evaluations of a community’s surroundings than an
individual sensor type alone. The approach uses Bayesian updating
to infer updated probabilities of event occurrence from assumed or
computed prior probabilities. The result is a posterior event prob-
ability given collected data. Bayesian updating is a well-known
method for data fusion across multiple sensors, especially in the
field of robotics (Durrant-Whyte and Henderson 2008). The novelty
of the proposed approach is (1) in its considerations and updating of
prior understandings of risk and (2) in integrating likelihoods of
observing data points within individual sensor networks first before
integrating that information across unrelated sensor types to monitor
a community condition or event. The approach enables the frame-
work to account for uncertainties in system states and to be appli-
cable across events. It captures information specific to each data
type, calculating specific sensor source likelihoods accounting for
data heterogeneity, before combining information from all sources.
It supports real-time and dynamic updating of estimated risks of an
event as different data are observed and more data become available.

To illustrate the framework’s use, the authors apply it to estimate
flood risks in parishes in the state of Louisiana during a 4-d period
in August 2016. Flooding during this time resulted in a Federal
Emergency Management Agency (FEMA) disaster declaration in
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26 parishes on August 14, 2016, an estimated $30 million in relief
efforts from the American Red Cross, and over $110 million of
estimated losses for Louisiana’s agriculture industry (Van Der Wiel
et al. 2017). The data sources selected for integration for event es-
timation are stream gauges (a physical sensor type) from the United
States Geological Survey (USGS) and tweets (microposts) from
Twitter (a social sensor type). Prior probabilities of flood events
in each parish are derived from FEMA flood risk maps. The results
are validated by comparing the dates and locations of updated flood
risks to the true flooding that occurred in Louisiana in August 2016.

The remainder of this paper is organized as follows. The first
section describes the background and related work further while
discussing the need for integrating data across sensor types to es-
timate events and the development of social media as a data source.
This is followed by a description of the framework and the required
calculations at each step of the approach. The authors next present
an application of the framework for monitoring flood risks in
Louisiana using data from two sensor types. In this section, the
authors explain in detail the calculations to integrate the specific
data sources for the application in order to explicate the frame-
work’s use. The next section presents the results from using the
approach to integrate data from the two sources in a 4-d period in
Louisiana in August 2016. Validation of the results and the use of
the proposed probability updating for increasing situational aware-
ness and decision-making are then discussed.

Background and Related Work

There are many different sensors available for monitoring condi-
tions in the built and natural environments. For example, physical
sensors such as strain gauges and accelerometers provide data to
detect anomalies in civil structures, and air quality and meteoro-
logical sensors collect data on atmospheric conditions. While smart
city initiatives are pushing forward the need for more connected
wireless sensor networks, e.g., Chicago’s Array of Things (Mone
2015), most interconnected sensor networks still lack heterogeneity
to collect multiple types of data and require single or similar sensor
types (Miorandi et al. 2012). Large-scale deployment of physical
sensor networks must consider sensor size, cost, and configuration,
and may be slow or impractical to implement depending on the
application, limiting the availability of physical sensor data within
a community (Rawat et al. 2014). Physical sensor networks for
structural health monitoring are often designed to monitor single
civil structures, as seen in studies such as Hackmann et al. (2014)
and Pakzad et al. (2008), rather than groups of structures over larger
distributed areas. Single physical sensor types alone are thus lim-
ited in the information they can reveal about community conditions
affecting infrastructure and people.

Social media users offer a new type of sensor—a social sensor—
which takes advantage of the constant information stream present
today. Social sensors can fill in gaps of information about environ-
mental conditions where physical sensors are not deployed or do
not exist. They can also provide data that physical sensors cannot
measure, such as information about societal conditions or public
perception regarding major events. Research has been conducted
using social sensors to examine community responses to events
such as mass shootings (Vieweg et al. 2008) and to detect critical
infrastructure failures (Tien et al. 2016) and natural disasters such
as earthquakes (Sakaki et al. 2010). Social sensor data collection
and analysis present their own set of challenges. Data from social
sensors are noisy and unreliable, containing rumors or misinforma-
tion that are both intentional and unintentional (Alexander 2014).
The majority of users do not share their locations (Leetaru et al.

2013), making it difficult to determine event locations and whether
or not the user is truly observing the event of interest. Moreover,
for social sensors to provide significant new information, specific
topics need to garner enough attention from the crowd. While many
physical sensors can provide continuous or near-continuous data,
social sensors may vary in the amount of information provided on a
topic at any given time.

Due to these challenges and limitations, including for both
physical and social sensor sources, data from individual sensor net-
works alone may not truly describe the causes or impacts of a dam-
aging event on a community. In this work, the authors investigate
the ability of data integrated from multiple sensor sources to en-
hance resulting analyses, event detection, and overall situational
awareness. Recent studies show potential in integrating different
sensor sources to detect hazard events. For example, Musaev et al.
(2015) map social media posts and data from physical sensor sour-
ces, including rainfall and earthquake data, to calculate the prob-
ability of detecting a landslide given a grid-based location. While
this study and others, e.g., Jongman et al. (2015), use data from
across sensor types, they do not provide a framework through
which heterogeneous sensor likelihoods of observed data can be
integrated to calculate a posterior probability of an event given that
data. In addition, the framework in this paper considers prior prob-
abilities of event occurrence to account for uncertainty in the dis-
aster or failure events themselves. This enables the assessment of
changing evaluations of risk as more data from different sources are
collected.

Proposed Framework

For the remainder of this paper, the authors use the term sensor
source to describe each type of sensor measuring a unique param-
eter, whether physical, social, or other, and the term sensor network
to describe a group of sensors from the same source. In the
proposed framework, data from sensors within one network are in-
tegrated first, and then data from across different sources are inte-
grated. Let θ represent the occurrence of a disaster or failure event
at a specified location or affecting a particular system component,
and let s1; s2; : : : ; sk each represent data from a different sensor
source, for k total sources. The prior probability of θ is denoted
PðθÞ, with the prior probability of nonoccurrence of the event equal
to 1 − PðθÞ. The framework is applicable for systems or events
with multiple states, as long as the states are mutually exclusive
and collectively exhaustive. The authors refer to θ throughout this
paper as the occurrence of the primary event of interest to be de-
tected, PðθÞ as the assessment to be updated, and θ̄ as the nonoc-
currence of θ. Prior probabilities of θ can be based on historical
data, physics-based analyses, previously updated probability distri-
butions, expert judgment, or a combination of these. These prob-
abilities represent a current understanding of risk for the event of
interest.

To update prior probabilities, appropriate data sources,
s1; s2; : : : ; sk, must be identified that indicate θ. As no data collec-
tion is perfect, these sources indicate θwith some uncertainty. In the
proposed approach, the data sources can be physical sensors, social
sensors, a combination of the two, or others, and sensors that collect
data continuously or provide information only at specific points in
time. The data integration across sources, s1; s2; : : : ; sk, is ulti-
mately performed through Bayesian updating. Bayesian updating
for data fusion combines data from sensors or experiments with
prior probabilities of event occurrence to compute posterior occur-
rence probabilities (Khaleghi et al. 2013). The resulting posterior
probabilities from the analysis are the conditional probabilities of
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events given observed data from the combined sources. Bayesian
updating of θ using these data is shown in Eq. (1):

Pðθjs1; s2; : : : ; skÞ ¼
Pðs1; s2; : : : ; skjθÞPðθÞ

Pðs1; s2; : : : ; skÞ
ð1Þ

where Pðs1; s2; : : : ; skjθÞ is the joint conditional probability of
observing data from all sensor sources for updating given event
occurrence, representing the likelihood of all sources, and
Pðs1; s2; : : : ; skÞ is the joint probability of observing data from all
sources. The resulting posterior probability, Pðθjs1; s2; : : : ; skÞ, is
the probability of event occurrence given observed data from differ-
ent data sources.

Calculating the likelihood of all sources and the joint probability
of all data requires several intermediary calculations. First, the in-
tegrated likelihood of data given θ from each individual network,
PðsijθÞ, must be calculated, where si represents the ith data source
out of k, by combining the observations indicating θ within each
network. These calculations are dependent on the specific applica-
tion of interest, the nature of the data, any possible relationships
between the data (including dependence or independence of obser-
vations within a network), and the accuracy or reliability of each
source. The observed data from each source must correspond in
terms of date, time, and/or location to the event of interest. Out of
the sources considered, the number of sources k available for up-
dating may vary in time. For instance, if on a day, only one of the
considered sources provides data indicating θ, then k ¼ 1, and k is
subject to change the following day. The application example in the
following section demonstrates how these calculations can be per-
formed for two specific data sources. The calculations of PðsijθÞ
are intentionally left open and flexible so that the framework can be
applied to different sensor sources outputting varying types of data
with varying likelihood calculations for θ.

The next step of the proposed framework is to compute the joint
likelihood of observing data from all sources, Pðs1; s2; : : : ; skjθÞ,
from the integrated likelihoods of data within individual networks.
The joint likelihood calculations are based on the assumption
that individual source likelihoods are independent of each other
when conditioned on the same event, location, or system compo-
nent of interest, i.e., likelihoods are conditionally independent
given θ. From this, the joint likelihoods are computed as the prod-
ucts of the individual source likelihoods for each event state, as in
Eq. (2)

Pðs1; s2; : : : ; skjθÞ ¼
Yk
i¼1

PðsijθÞ ð2Þ

The proposed framework next requires calculation of the joint
probability of observing data from all sources, Pðs1; s2; : : : ; skÞ,
using the total probability of data. This is possible because all states
of the event are mutually exclusive and collectively exhaustive.
Eq. (3) shows this calculation for two states of the event, θ and
θ̄, i.e., occurred and not occurred. Pðs1; s2; : : : ; skjθÞ is previously
calculated from Eq. (2). The likelihood of data for the nonoccur-
rence of θ, Pðs1; s2; : : : ; skjθ̄Þ, is computed in the same way,
i.e., based on the likelihood of data from each source and assuming
conditional independence. The likelihood of data from each source
indicating θ̄, Pðsijθ̄Þ, depends on the application and source, just as
PðsijθÞ depends on them

Pðs1; s2; : : : ; skÞ ¼ Pðs1; s2; : : : ; skjθÞPðθÞ
þ Pðs1; s2; : : : ; skjθ̄ÞPðθ̄Þ ð3Þ

Finally, the posterior probability of occurrence of the event of
interest, θ, is updated given the data across sources by inputting the
results of the previous calculations into Eq. (1). This posterior rep-
resents an updated understanding of risk for the disaster or failure
event in real time as data become available.

Additionally, disaster or failure events in a community are often
dynamically evolving in time. To consider data over multiple se-
quential time periods to estimate events, sequential Bayesian updat-
ing is employed in the steps above. Eq. (1) becomes Eq. (4) to
compute a posterior probability using sequential data over two time
periods. In the equation, s represents the first set of data from sensor
sources 1; : : : ; k, and t, the second set from sources 1; : : : ;m.
More time periods can be added as data are available, and it is
not necessary to collect data from all of the same sources at every
time period, as the availability of data from each source may change
over time. Data output from across sensor networks is assumed to
be conditionally independent from one time period to the next, with
the joint likelihood of data from multiple time periods found by
multiplying all available likelihoods. The purpose of sequential
updating is to include data from multiple observed periods for up-
dating events that develop and occur over time. Sequential updat-
ing in the proposed framework ends when updated probabilities
approach 1, suggesting that occurrence of the event θ has been de-
tected with near certainty, or when data indicating θ are no longer
available. After obtaining posterior probabilities from updating or
sequential updating, the proposed framework can continue to be
used to detect θ in the future, with prior probabilities that remain
the same or are re-evaluated based on the results of updating and the
nature of the event of interest, e.g., if events occur as Poisson proc-
esses or with cumulative effects. For example, if damage is detected
in an infrastructure component with a certain probability and no
action is taken to remediate that damage, the updated probability
can be assumed as the new prior. In contrast, if action is taken to
repair that component, the prior probability of damage for future
updating may be lower than the original prior. The same or addi-
tional data sources can be used

Pðθjs1; s2; : : : ; sk; t1; t2; : : : ; tmÞ

¼ Pðs1; s2; : : : ; skjθÞPðt1; t2; : : : ; tmjθÞPðθÞ
Pðs1; s2; : : : ; sk; t1; t2; : : : ; tmÞ

ð4Þ

In summary, the steps of the proposed approach are as numbered
and described below:
1. Compute prior probability or probabilities of occurrence for the

event(s) being considered, PðθÞ.
2. Identify the sensor sources available that indicate θ.
3. Determine which observations from each source indicate θ, with

some uncertainty.
4. Integrate likelihoods of data from sensors within each sensor

network to calculate the overall likelihood of data from each
source, PðsijθÞ, i ¼ 1; : : : k, where k is the number of sources.
This process varies depending on the data output from each
source. Repeat this for all sensor sources and states of the
disaster or failure event.

5. Calculate the joint likelihood of data from all sources,
Pðs1; s2; : : : ; skjθÞ. Assuming the sources are conditionally in-
dependent on θ, the joint likelihood is the product of all source
likelihoods. Repeat this for all states of the event.

6. Calculate the joint probability of observed data,
Pðs1; s2; : : : ; skÞ.

7. Calculate the final posterior probability of event occurrence
updated given data from across sources, Pðθjs1; s2; : : : ; skÞ.
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Application Example: Flood Event Estimation in
Louisiana, United States

In this section, the authors present a specific example to illustrate
application of the proposed framework. The application is to update
flood risks in the state of Louisiana during August 10–13, 2016, by
integrating data from both physical and social sensor sources using
the proposed framework. Flood risk around the world is increasing
due to climate change and other environmental factors (Hirabayashi
et al. 2013), and Louisiana is known to be subject to high flood risk
given its low elevation and coastal proximity (Groves et al. 2016).
Flood events are distributed over large geographic areas that cannot
be completely and continuously monitored in real time. In addition,
uncertainty exists in terms of event timing and location based on a
combination of factors in the natural and built environments (Morss
et al. 2005). Therefore, there is the opportunity to integrate data
from multiple sensor sources to increase situational awareness for
these events. This application example is also chosen due to the
availability of postevent data for validation of the approach for the
flood events impacting Louisiana in August 2016. In the subsec-
tions that follow, each step in obtaining updated estimated flood
risks based on collected data is explained within the structure of
the proposed framework.

Steps 1–2: Prior Probabilities and Data Source
Identification

For the application, let θ be defined as flood occurrence in a single
parish (county) in Louisiana and θ̄ indicate nonoccurrence of a
flood in the same parish with Pðθ̄Þ ¼ 1 − PðθÞ. The authors use
FEMA Flood Insurance Risk Maps to derive a prior probability
of risk, PðθÞ, and its complement for all 64 parishes. These maps,
which are part of the National Flood Insurance Program, designate
zones of the United States that are likely to be inundated in a flood
event (Burby 2001). The base-level flood considered is the 100-year
flood, or flood with a 1% probability of occurrence in a given year.
The regions that will be inundated during the base flood event are
named Special Flood Hazard Areas (SFHA) and are highlighted on
the flood risk maps.

Fig. 1 shows an example flood risk map for Ascension Parish in
Louisiana. This screenshot is from a publicly available interactive
map developed by the Louisiana State University Agricultural
Center, which allows users to view flood risks in Louisiana by par-
ish (LSU AgCenter and LADOTD 2017). Some 64% of Ascension
Parish is covered by a SFHA (shaded in the figure) and will be
inundated in a 100-year flood event. The remaining area of each
parish outside of the zone is expected not to be inundated in such
an event.

An example event of interest θAscension is flood occurrence in
Ascension Parish. The authors assume the prior probability of this
event to be 1% (the probability of flood inundation in a given year
in a SFHA) multiplied by the fraction of the parish area covered
by the SFHA. For Ascension Parish, this results in a probability
of 0.64% for a prior knowledge of flood risk, and this is defined
as PðθAscensionÞ. This process is repeated for all 64 parishes in
Louisiana resulting in a range of prior probabilities of 0.05%–
0.88% across all parishes. As with all probability estimations, there
are potential errors in defining these priors. However, these re-
present typical assessments of flood risks in the United States, so
the authors consider them sufficient to set an initial estimation of
risk for each parish.

For data integration, the authors select data from two publicly
available sources (k ¼ 2) that, with some uncertainty, indicate a
flood within each parish. The first data source (s1) is physical sen-
sor data from USGS, which monitors the conditions of the nation’s
streams and rivers with near-real-time data from stream gauges. A
sudden increase in gauge height is selected as the measurement of
interest to provide updating information on the probability of flood
occurrence for each parish. The second data source considered (s2)
is social media big data from Twitter. The data collected from
Twitter include the texts of tweets and metadata such as date, time,
and tweet location, if available. Tweet relevance to flood events is
selected as the metric of interest, which is determined using a ma-
chine learning classifier. The authors also select these sources to
demonstrate how the framework can be used to integrate data from
unrelated sources. By integrating informationwithin each individual
network before integrating data from across sources, the framework
is able to consider unique data likelihoods for θ from each source.

Fig. 1. Example flood risk map with 100-year floodplain shaded for Ascension Parish, Louisiana. (Map Data from © 2017 HERE, © 2017 Microsoft
Corporation.)
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Step 3: Data Collection from USGS and Twitter and
Indications of θ

The authors next collect data from the two sources and determine
which observations from each source indicate a flood event for each
parish.

Gauge Height from USGS Stream Gauges
From the USGS stream gauges, data from all gauges outputting
gauge height in Louisiana from June to August 2016 are collected.
A total of 235 stream gauges in Louisiana provide downloadable
gauge height data during the period of interest. Gauge height is
reported at every 15-min or 30-min interval, depending on the
gauge. Fig. 2 provides an example of available gauge height data
from a stream gauge in Louisiana during a week in August.

Full flood predictions are based on a combination of topology,
rainfall, streamflow, and gauge height data, as well as other hydro-
logical and meteorological measurements. The objective of this
study is to investigate the updating of prior estimations of event
risk with data from multiple sources, rather than precise hydrologic
modeling of flood systems. Therefore, a sudden increase in gauge
height is taken as the indicator of flood occurrence.

To find sudden increases, daily average gauge heights are first
computed over the period of data collection. From these averages,
the percentage increase between each day is calculated. In the equa-
tion, yj represents the percentage increase from the previous day to
the current day for the jth stream gauge. A percentage increase in
daily average gauge height yj over 100%, i.e., the average gauge
height at least doubled from one day to the next, indicates a poten-
tial flood event at that stream gauge. With this indicator of flood
risk in the area surrounding a stream gauge, the data are binarized to
indicate a flood event in an area on a particular day if yj > 100%.
For this example, the authors do not consider data that do not in-
dicate a flood event, where yj < 100%, but such data can be incor-
porated if the likelihoods based on such an indication can be
calculated. Here, the authors focus on the differences in updating
from unrelated data sources and choose only the yj > 100%
indication for the stream gauge source. The uncertainty of this in-
dicator is accounted for when computing the overall likelihood of

the sensor network, and the proposed framework allows for addi-
tional measurements and uncertainties from the same source
indicating θ, such as multiple thresholds for a sudden increase
in gauge height. Using other thresholds for indicating a flood event
(e.g., yj > 150%) would add or remove data points from the analy-
sis, with the overall process to calculate posterior probabilities
remaining the same.

From the data, 66 stream gauges indicated a flood at least once
during the three-month data collection period from June to August
2016, with several gauges indicating floods multiple times within
the period. These are the observations that indicate occurrence of
the event of interest θ and are used for updating in the following
steps. Fig. 3 shows the locations of these stream gauges in Loui-
siana and the dates on which they indicated a flood for the period
August 10–13, 2016.

Tweet Relevance to Flood Event
The Twitter data for this application are downloaded using Twitter’s
Streaming application programming interface (API) and by
scraping historical tweets from Twitter’s search page. To determine
which observations from this data source indicate a flood event in
each parish, a machine learning classifier is built to predict a tweet’s
relevance to a flood event, z. This prediction is binary: a tweet is
either relevant (z ¼ 1) or irrelevant (z ¼ 0) to a flood event. The
classifier is then used to determine which tweets from the period
of interest are relevant to flood events. After the tweets are classi-
fied, they are sorted by location.

The classifier is a support vector machine (SVM) model built
using Weka, a Java package for machine learning (Hall et al.
2009). The full database of tweets used to build the model consists
of about 137,000 tweets, streamed or downloaded from various
time periods from August 2016 to February 2017. To build the
model, a small training set of tweets is first compiled from the data-
base and manually labeled as relevant or irrelevant to flood events.
This training set is assembled with a diverse set of tweets that refer
to many different flood events and also unrelated phenomena or
events to ensure the model generalizes and classifies relevance for
tweets regarding any flood event. Relevance is defined as tweets
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Fig. 2. Example gauge height data for a stream gauge in Louisiana. (Data from USGS 2017.)
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referring to current flood events, excluding updates about flood
recovery efforts and expressions of sympathy from others.

The final training set consists of 496 tweets. In the training set,
125 tweets are relevant and 371 are irrelevant. A small testing set is
also compiled to evaluate the model’s performance at classifying
new tweets. The testing set contains 214 tweets, manually classified
with 55 relevant and 159 irrelevant tweets. Table 1 shows the con-
fusion matrix for the model evaluated on the test set. The model’s
classification of a tweet is denoted by z, and the true value of a
tweet’s relevance is denoted by λ, where 1 indicates true relevance
and 0 indicates true irrelevance.

The confusion matrix shows the performance of the model for
evaluating the test set. The top row (λ ¼ 1) shows 34 tweets were
correctly classified as relevant, while 21 tweets were incorrectly
classified as irrelevant. For λ ¼ 0, the second row shows that 7
tweets were incorrectly classified as relevant although they were
truly irrelevant. True positives are the tweets correctly classified
as relevant by the model (the top left corner of the confusion ma-
trix). Recall is calculated as the fraction of true positives out of
the total number of truly relevant tweets, which is equal to 0.618.
This represents a measure of accuracy expressing the likelihood of
a correct tweet classification given true relevance to a flood, also
represented by the conditional probability, Pðz ¼ 1jλ ¼ 1Þ. The
recall of the model in automatically classifying the testing set is
used as the measure of the model’s reliability. The authors use this
value to calculate the likelihood of tweet relevance collected from
Twitter in the next step of the updating process.

Using the built classification model, unseen tweets from August
10–13, 2016, filtered for the word flood are classified as relevant
or irrelevant with the accuracy discussed above. As the event of
interest θ is flooding in a parish, tweets are next filtered by loca-
tion, if that metadata are available, to categorize them by parish in
Louisiana. If location is not available, the text of each tweet is
searched for cities and towns in Louisiana through a comprehensive
list of municipalities and their respective parishes (Smith 2005). If
the tweet contains one of the cities or towns on the list, it is con-
sidered a tweet relevant to a flood event for that parish. Of course,
this means some tweets that are found may not truly be located in
Louisiana (e.g., Iowa, Louisiana, is a town in Calcasieu Parish, but
tweets found mentioning Iowa typically refer to the state of Iowa).
Uncertainty in the data is accounted for by calculating the sensor
source likelihood in the following section.

This process ultimately results in a list of tweets relevant to
flood events for each parish. Fig. 4 shows an example of one of
the tweets found relevant to a flood event in East Baton Rouge
and Tangipahoa Parishes on August 12, 2016. There is no location

Table 1. Confusion matrix for support vector machine classifier tested for
tweet relevance to flood events

Classified as z ¼ 1 Classified as z ¼ 0 True class

34 21 λ ¼ 1

7 152 λ ¼ 0

-95 -94 -93 -92 -91 -90 -89

Longitude

29

30

31

32

33

La
tit

ud
e

August 10, 2016

Stream Gage, yj > 100%

-95 -94 -93 -92 -91 -90 -89

Longitude

29

30

31

32

33

La
tit

ud
e

August 11, 2016

-95 -94 -93 -92 -91 -90 -89

Longitude

29

30

31

32

33

La
tit

ud
e

August 12, 2016

-95 -94 -93 -92 -91 -90 -89

Longitude

29

30

31

32

33

La
tit

ud
e

August 13, 2016

Fig. 3. Stream gauges in Louisiana indicating a flood, August 2016.
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attached to the metadata of this tweet, so its associated locations
are determined by searching the text for municipalities from the
aforementioned list. The text of the tweet indicates Baton Rouge,
Louisiana (East Baton Rouge Parish), and Hammond, Louisiana
(Tangipahoa Parish). The tweet is therefore categorized to update
the state estimations for these two parishes.

Step 4: Individual Source Likelihoods of Data from
USGS and Twitter

Likelihood of yj > 100%
The daily likelihoods of yj > 100% given a flood event in a parish
θ, Pðyj > 100%jθÞ, are now calculated, where yj is the percent in-
crease in daily average gauge height for the jth stream gauge and
j ¼ 1; : : : ; n for n stream gauges indicating a flood event on the
day in question. There are few validated empirical data that can be
used to estimate the likelihoods of observing the data yj > 100%
given a flood event in a parish θ. Therefore, these likelihoods are
calculated with a decaying function for Pðyj > 100%jθÞ that de-
creases in likelihood with each gauge’s distance from the parish
being considered. Fig. 5 shows the function used in this application,
where distance is expressed in degrees of latitude and longitude.
Pðyj > 100%jθÞ is assumed to be 1 when stream gauge j is in the
parish considered by θ, i.e., a stream gauge will certainly show a
daily average gauge height that doubles from one day to the next
given a flood in a parish if it is located in that parish. As the distance
between the parish and stream gauge increases, Pðyj > 100%jθÞ
decreases. The distances are measured from each stream gauge to
the nearest point on the border of the parish considered by θ.

As an example, on August 10, 2016, only one stream gauge
in Louisiana reported yj > 100% where j ¼ 1 as shown in Fig. 3.
That stream gauge’s distance away from every parish was calcu-
lated and input into the function in Fig. 5. The results are the like-
lihoods of observing y1 > 100% given flood events in each parish.
For all stream gauges, the authors assume that any Pðyj > 100%jθÞ
less than 0.01 is insignificant for updating and can be expressed
as 0. Ultimately, there are 64 · n likelihoods for each day, one from
each stream gauge, out of n, for each of the 64 parishes.

Next, the likelihood of observed data for all stream gauges,
Pðy > 100%jθÞ, is computed by combining the daily likelihoods of
all stream gauges indicating a flood in a parish. The authors do not
assume independence between these likelihoods and use the total
probability theorem to integrate them. To do this, the authors in-
troduce a variable, gj, to represent the jth stream gauge out of all
stream gauges indicating a flood per day. PðgjÞ is simply 1=n, so
that each stream gauge indicating a flood event is weighted equally.
Let gj be independent of θ and yj, so Pðyj > 100%jgj; θÞ ¼
Pðyj > 100%jθÞ. The authors create independence for this variable
to facilitate the integration of likelihoods of gauge height data. To
eliminate this assumption of independence, more information on

the combined likelihood of data from stream gauges indicating a
flood for each parish is needed. The likelihood of observed data
for all stream gauges is calculated as shown in Eq. (5):

Pðy > 100%jθÞ ¼
Xn
j¼1

Pðyj > 100%jgj; θÞPðgjÞ ð5Þ

If no data from other sources are available, as is the case for
some parishes on August 10, 2016, the probability Pðy > 100%Þ
is computed, and the need to compute joint probabilities between
multiple data sources in Step 6 is eliminated. To calculate Pðy >
100%Þ, first, Pðyj > 100%Þ is calculated for each stream gauge
empirically by dividing the number of days the gauge read yj >
100% by the total number of days on which data were collected.
These values are then combined with total probability using gj to
result in Pðy > 100%Þ.

The likelihoods of the stream gauges indicating a flood given
no flood occurrence in a parish are computed as shown in Eq. (6).
The expression is derived using total probability

Pðyj > 100%jθ̄Þ ¼ Pðyj > 100%Þ − Pðyj > 100%jθÞPðθÞ
1 − PðθÞ ð6Þ

In assessing this sensor source, including more or fewer data
points by changing the threshold yj from 100% to another value
would change the overall likelihood depending on the likelihoods
from the individual stream gauges added or removed. For instance,
if more stream gauges are included in the analysis, but some of
those stream gauges are farther away from the parish of interest
(i.e., with lower likelihoods), the overall likelihood will decrease
even though more information is available. In other cases, decreas-
ing the number of stream gauges available may increase the final
posterior probabilities if those that remain are in or very close to
that parish, making the overall likelihoods of stream gauge data at
or close to 1. Due to the nature of the data collected, the individual

Date Tweet Text

August 12, 2016 “Move to higher ground! Flash Flood 

Warning continues for Baton Rouge 

LA and Hammond LA until 1:00 PM 

CDT” 

Fig. 4. Example of tweet classified as relevant and containing location
indicators for Lousiana.
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Fig. 5. Decaying probability function with distance for stream gauge
sensor likelihood.
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likelihoods of each stream gauge are important in calculating this
specific sensor source likelihood. This is in comparison to the
calculation of the Twitter data source likelihood as discussed in the
following section.

Likelihood of Tweet Relevance to a Flood Event (z � 1)
Tweets indicating a flood event in a parish during August 10–13,
2016, were collected from Twitter and classified by the built
SVM model. The likelihood of tweet relevance to a flood event,
Pðz ¼ 1jθÞ, is calculated using the number of tweets indicating a
flood in each parish. Pðz ¼ 1jλ ¼ 1Þ is the recall calculated by the
performance of the classifier. The number of tweets available is an
indicator of classification accuracy (Musaev et al. 2014). Therefore,
in Eq. (7), the recall accuracy metric is factored by the number of
tweets indicating a flood in the considered parish NP to compute
the probability of tweet relevance given θ. The authors add this un-
certainty to the likelihood calculation because most of the tweets
are geolocated based on the presence of Louisiana city or town
names in their texts, which does not guarantee correct categoriza-
tion of indicated tweets by parish. Moreover, there are many fewer
tweets available for each parish compared to the total number of
tweets for each day. The classifier is therefore assumed to be less
likely to predict the relevance of these specific tweets of interest
correctly. In reducing the accuracy metric by NP=ðNP þ 1Þ, the
likelihood of tweet relevance in a parish is higher when there are
more relevant tweets in that parish. That is, if there are more rel-
evant tweets mapped to a parish, the higher the source likelihood,
Pðz ¼ 1jθÞ, will be. In contrast with the overall likelihood calcu-
lations for stream guage data previously described, the likelihood of
this social sensor source given a flood event in a parish does not
depend on varying likelihoods of individual tweets due to the nature
of the data collection and observations

Pðz ¼ 1jθÞ ¼ Pðz ¼ 1jλ ¼ 1Þ
�

NP

NP þ 1

�
ð7Þ

To calculate the probability the model will classify any tweet as
relevant, Pðz ¼ 1Þ, the total number of tweets classified as relevant
on a day is divided by the total number of tweets collected on each
day, regardless of location. Pðz ¼ 1Þ is taken as the same value for
all parishes. This value is necessary on August 10, 2016, when sev-
eral parishes are referred to by tweets classified as relevant to a
flood, but no stream gauge data are available because those parishes
are too far away from the only available stream gauge indicating a
flood on that day. Therefore, Twitter is the only available data
source for those parishes, and the joint probability calculation in
Step 6 is replaced by Pðz ¼ 1Þ, as is the case when only stream
gauge data are available and only Pðy > 100%Þ is needed. Finally,
Pðz ¼ 1jθ̄Þ is derived from total probability just as Pðy > 100%jθ̄Þ
was calculated in Eq. (6) to calculate the likelihood of data for the
complement of θ.

The authors use the calculations and integration of data likeli-
hoods within each network in this application to demonstrate the
required information to use in Step 4 of the proposed framework.
The specific calculations for this step will vary depending on the
nature of the data collected for each source. For the example, the
gauge height data represents a source for which the likelihoods of
individual observations can be integrated, while Twitter data re-
present a source for which the number of indications of θ and the
accuracy of classifying individual observations can be used to ob-
tain the overall likelihood of the source. The authors acknowledge
assumptions and simplifications made in the analysis of both data
sources for indicating flood events may not include other factors
used in more comprehensive flood modeling and detection. The
data collection and integration of information from these sources in

the example explicates use of the framework for data with different
likelihoods.

Steps 5–7: Probabilities of Data, Integration of
Data Likelihoods, and Final Updating

The data from each source, gauge height and tweet relevance, are
conditionally independent given the event of interest θ. The joint
likelihood of data from both sources on each day is calculated using
Eq. (8):

Pðy > 100%; z ¼ 1jθÞ ¼ Pðy > 100%jθÞPðz ¼ 1jθÞ ð8Þ
The joint probability of observing the data from both sources is

calculated using Eq. (9), with information included on both states
of a flood event in a parish: occurred, θ, and not occurred, θ̄

Pðy > 100%; z ¼ 1Þ ¼ Pðy > 100%jθÞPðz ¼ 1jθÞPðθÞ
þ Pðy > 100%jθ̄ÞPðz ¼ 1jθ̄ÞPðθ̄Þ ð9Þ

For the application, the authors also sequentially update data
from August 11–12, 2016, and August 12–13, 2016. The proba-
bility of data from the 2-d intervals is calculated using Eq. (10).
Subscript 1 refers to likelihoods calculated on one day, and sub-
script 2 refers to likelihoods calculated on the following day:

Pðy1 > 100%;z1 ¼ 1; y2 > 100%;z2 ¼ 1Þ
¼Pðy1 > 100%;z1 ¼ 1jθÞPðy2 > 100%;z2 ¼ 1jθÞPðθÞ
þPðy1 > 100%;z1 ¼ 1jθ̄ÞPðy2 > 100%;z2 ¼ 1jθ̄ÞPðθ̄Þ ð10Þ

For the application, the final posterior probabilities for each
parish in Louisiana are computed using Eqs. (11) and (12), with
Eq. (12) used for sequential updating. The authors limit the use of
sequential updating here to two days because with the amount of
data available during this time period, updating using more than
two days of data results in posterior probabilities of nearly 1 in
several parishes with the remaining parishes receiving little to no
updating

Pðθjy > 100%; z ¼ 1Þ ¼ Pðy > 100%jθÞPðz ¼ 1jθÞPðθÞ
Pðy > 100%; z ¼ 1Þ ð11Þ

Pðθjy1 > 100%; z1 ¼ 1;y2 > 100%; z2 ¼ 1Þ

¼ Pðy1 > 100%; z1 ¼ 1jθÞPðy2 > 100%;z2 ¼ 1jθÞPðθÞ
Pðy1 > 100%; z1 ¼ 1;y2 > 100%; z2 ¼ 1Þ ð12Þ

In cases when data from one source are completely unavailable
(e.g., if there are no relevant tweets in a parish), the prior risks are
updated with information from only the other source. When there
are no data available from any source, the prior risk remains un-
changed. In other applications with more than two sources, the joint
probabilities of different combinations of sensor sources must be
computed.

Results

Updated Probability Distributions and Flood Event
Estimation over Time

Using the proposed framework for integrating data across multiple
sources, the resulting updated probability distributions for flood risk
by parish are mapped in Fig. 6 for each day of the 4-d period of
investigation. The lowest probabilities in light yellow show the par-
ishes that had little or no data with which to update their prior
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probabilities of flood events. From Fig. 6, few updated probabilities
are computed on August 10. The highest updated probabilities of
flood occurrence in a parish on each day from August 10–13,
2016, are 0.05 (Orleans Parish), 0.45 (Ascension Parish), 0.73
(St. Tammany Parish), and 0.81 (Livingston Parish), respectively.
The largest changes in prior to posterior risks occurred onAugust 12.

Fig. 7 shows sequential updating results, from August 11 to 12
and from August 12 to 13, and the effect of combining data from
multiple days. The largest updated probability of flood occurrence
in a parish after sequential updating from August 11 to 12 was 0.998
(East Baton Rouge), and for sequential updating from August 12 to
13, 0.999 (East Baton Rouge and Livingston).

Updated Probability Distributions and Flood Event
Estimation by Sensor Type

As an objective of this study is to integrate multiple data sources for
event estimation, the authors investigate the effect of additional data
on the estimation, specifically looking at the results using data from
single sensor sources compared to combining the chosen data sets.
Fig. 8 shows the results of updating probabilities of flood risk on
August 12, 2016, by parish based on only stream gauge data, only
Twitter data, and then using information both sensor sources.

Using information from both sources significantly increases the
updated probabilities. For instance, in St. Tammany Parish, three
stream gauges indicated a potential flood event based on increased
gauge height and two tweets were classified as relevant to a flood

event. The prior probability is computed to be 0.0065. The resulting
updated probabilities are 0.17 and 0.08 for updating with gauge
height data and tweet relevance data alone, respectively. When data
from both sources are included in the inference, the updated prob-
ability of flood risk is 0.73. This is seen for all parishes that have
data with which to update their prior probabilities of flood risk;
updating with an individual data source does not result in a pos-
terior probability higher than 0.20 on August 12, while both data
sources combined update probabilities up to 0.73. This is due to the
joint probabilities of observing data from multiple sources being
smaller than the probabilities of observing data from one source
alone. Therefore, even as more data are available from one source,
the probabilistic estimations experience the most updating when
multiple data sources indicate the same event θ.

Validation and Data Availability

The results of the approach and analyses are compared to the true
flooding that occurred in August 2016 in Louisiana for validation.
The floods caused a Major Disaster Declaration from FEMA, and
26 parishes were designated for Individual or Public Assistance,
shaded in Fig. 9 (FEMA 2016). The results in Figs. 6 and 7 show
increased flood risks after updating in most of the parishes listed in
the Major Disaster Declaration. Of the 26 parishes with a declared
Disaster Declaration, 17 are updated based on the data from
August 12, and an additional six parishes not updated on August
12 are updated based on data from August 13. Fig. 10 shows
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Fig. 6. Resulting updated probability distributions for August 10, 11, 12, and 13.
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parishes with updated probabilities in dark blue and parishes with-
out data to update priors in green for August 12 and 13, and after
sequential updating from August 12–13.

The updated probabilities also include nine parishes not in
FEMA’s Disaster Declaration. This can be explained by a number
of factors. FEMA considers numerous variables when deciding on
areas for Disaster Declarations. Some of these factors include
localized impacts, insurance coverage in force, estimated cost of

assistance, and other federal assistance programs (FEMA 2017).
Ultimately, flooding may have occurred in parishes updated by
data, even if they are not part of the Disaster Declarations.

For those parishes included in the Disaster Declaration that did
not have updated probabilities of flood risk from the application,
this is due to a lack of availability of data indicating a flood event
for those particular parishes. The presence of data is essential in
the framework to estimate the event of interest. For any application,
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Fig. 7. Updating and sequential updating results with sensor observations from August 11 to August 11–12 and August 12 to August 12–13.
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Fig. 8. Resulting updated probability distributions for August 12, 2016, using gauge height and tweet relevance data sources alone compared to
estimation from integrating both data sources.
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different sensor sources or different measures for which sensors
indicate the event of interest would create different results. Fig. 11
shows the availability of data indicating θ over time for each parish.
The number of available observations is shown, for counts of stream
gauges with sudden increases in gauge height, number of tweets
classified as relevant, and total daily data point counts from com-
bining both sources.

To further validate the results, the authors examine USGS post-
event maps to qualitatively evaluate the results of applying the

framework to the application example. After the flood events in
August 2016, USGS created a report to summarize the flooding
and developed several flood inundation maps based on high-water
marks. The report also included a map of cumulative rainfall across
the state during August 11–14, 2016. This and the inundation map
for Louisiana with shaded areas indicating inundation is shown in
Fig. 12 (Watson et al. 2017).

Specifically, extensive inundation around the Amite and
Tangipahoa Rivers affected parishes in the northeastern portion
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Fig. 10. Parishes with updated probabilities of flood risk (dark blue) from integrated data sources on the dates shown.
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Fig. 11. Stream gauge and Twitter data availability by parish from August 10–13, 2016.

(a) (b)

Fig. 12. (a) Precipitation in Louisiana from August 11–14, 2016 (physiographic boundaries from Fenneman 1946; base map courtesy of
National Weather Service, Advance Hydrologic Prediction Service); and (b) inundation map for Louisiana. (Reprinted from Watson et al. 2017.)
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of Louisiana’s boot region. These include three of the parishes with
the highest updated probabilities of flood occurrence using the pro-
posed approach: East Baton Rouge Parish, Livingston Parish, and
St. Tammany Parish. These correspond to the areas of highest pre-
cipitation during the time period investigated and with areas of con-
firmed inundation. The integrated data during August 10–13, 2016,
update the prior probabilities of flood occurrence from 0.0055,
0.008, and 0.0064 to 0.73, 0.81, and 0.73 for East Baton Rouge,
Livingston, and St. Tammany parishes, respectively. Fig. 13 shows
the results of sequential updating for the application from August
12–13, 2016, with regions of highest precipitation (1) and verified
inundation (2) from Fig. 12 highlighted. The regions of highest
precipitation [shown in dark orange and red in Fig. 12(a)] corre-
spond to the boxed parishes in Fig. 13(a). The inundation around
the Amite, Comite, Tickfaw, and Tangipahoa Rivers mapped in
Fig. 12(b) correspond to the boxed region in Fig. 13(b).

Conclusions

The framework presented in this paper provides a unique probabi-
listic approach to integrating data from across sources to estimate
the probability of disaster or failure event occurrence given ob-
served data. It updates prior probabilities of event occurrence with
both individual and combined data sources. The framework is able
to include data from a wide range of sensor types with varied like-
lihoods and shows how prior risks of an event change as new, po-
tentially anomalous data are introduced. It is applicable to general
disaster or failure events, including natural disasters and structural
or infrastructure system failures as long as data are available. The
Bayesian updating approach for data integration does require the
establishment of prior probabilities of event occurrence. If these
are unknown, they are initially assumed with the potential use of
uninformative priors to limit bias in the results.

In the application example, the authors apply the framework to
estimate flood events in Louisiana in August 2016. Prior flood
event risk in a parish is calculated based on FEMA risk map data.
For updating in the application, physical stream gauge data and

social Twitter data are used. Data from other sensor sources can
be easily added using the same approach presented, with new like-
lihood calculations for each additional sensor type. While these
likelihoods will be defined differently depending on the data output
by each source, the general framework is flexible such that chang-
ing these will not change the implementation process as long as the
sensor source likelihoods can be found.

The results from updating prior flood risks in Louisiana from
August 10–13, 2016, show that additional data over time and
from across both sensor sources increase the amount of updating
possible in real-time event estimation. The results are validated
by comparing the parishes with highest updated probabilities with
FEMA Disaster Declarations and postevent inundation and precipi-
tation maps from USGS. This showed similar regions of flooding
indicated based on updating from the integrated data sets as from
the true event.

Probabilistic updating using the proposed framework increases
situational awareness and can be used to support community
decision-making during and after disaster or failure events. The
impacts of the results obtained from integrating data using the
proposed framework are in three main areas:
1. Updating prior risk assessments based on integrated inferences

from multiple data sources improves situational awareness,
particularly if done in real-time, with updated probabilities in-
dicating locations or components most likely to be experiencing
the event at the time assessed. In the example application, com-
munities have a more holistic view of their flood risk from
monitoring both conditions from the natural environment and
first-hand accounts from community members of a current event.

2. Based on the granularity of the estimation, comparing updated
probabilities facilitates prioritization of resources by location
and time during a disaster or failure event. In the application,
directly comparing flood risks between parishes supports real-
time decision-making and resource allocation during emergency
response by identifying the most vulnerable parishes.

3. The framework enables assessment of the monitoring capabil-
ities of different data sources. By integrating data first within
networks then across sources, the updating approach reveals the
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availability of data and the updated probabilities from individual
compared to combined sources postevent. These results evaluate
a community’s monitoring capabilities, demonstrate what types
of data are available throughout the community, and detail
where multiple data sources can effectively supplement each
other. The application shows how stream gauge data and Twitter
data contribute to updating prior risks, both individually and
particularly when combined.
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