
Algorithms for Bayesian Network Modeling, Inference, and
Reliability Assessment for Multistate Flow Networks

Yanjie Tong1 and Iris Tien, Ph.D., A.M.ASCE2

Abstract: The Bayesian network (BN) is a useful tool for the modeling and reliability assessment of civil infrastructure systems. For a
system comprising many interconnected components, it captures the probabilistic dependencies between components and system perfor-
mance, with inference in the BN informing decision making in the management of these systems. However, one of the major challenges in the
BN modeling of infrastructure systems is the exponentially increasing computational complexity as the number of components in the system
increases. Previously, algorithms have been developed for BN modeling of binary systems. Compared with binary systems, multistate system
modeling provides a more detailed description of system reliability and enables the analysis of flow instead of connectivity networks. How-
ever, the dimensionality of the problem also increases. This paper advances the state of the art in BN modeling of complex networks by
presenting new algorithms for constructing the BN model for multistate components and systems and performing exact inference over these
models. The results support reliability assessment of civil infrastructure flow systems. Specifically, the authors present a new lossless com-
pression algorithm for initial construction of the BN model and simultaneous preprocessing of intermediate factors for inference. These
significantly reduce memory storage requirements for the BN. Two heuristics are described to further increase computational efficiency.
The new algorithms are applied to an example infrastructure system. The ability to conduct inference across the network is demonstrated
and performance measured compared to existing algorithms in terms of both memory storage and computation time. The proposed algorithms
are shown to achieve exponentially increasing data compression with a stable increased computation time ratio, enabling larger multistate
flow networks to be modeled as BNs than previously possible. DOI: 10.1061/(ASCE)CP.1943-5487.0000699. © 2017 American Society of
Civil Engineers.

Author keywords: Civil infrastructure systems; Bayesian networks; Multistate system modeling; Inference; Algorithms; Reliability
assessment.

Introduction

Infrastructure systems are critical to everyday lives and to the
health, safety, and functioning of society. They enable researchers
to access people’s daily needs, including water, electricity, and
food. However, these systems are aging and subject to hazards of
increasing frequency and severity. In this environment, it is impor-
tant that infrastructure systems continue to function reliably.
Rigorous reliability assessments support decision making in infra-
structure management to achieve this.

Any given civil infrastructure system comprises many intercon-
nected components. The functioning of individual components re-
sults in the provision of services by the systems overall. Assessing
the impact of component performance on system performance en-
ables a stakeholder to identify the most critical components, and
prioritize decisions for inspection, repair, or replacement of these
system elements. The objective is to create more reliable systems

under both normal operating and hazardous conditions, leading to
improved community outcomes (Johansen et al. 2016).

The Bayesian network (BN) is a useful framework under which
to perform infrastructure reliability assessments. Given the uncer-
tainties associated with component performance and the hazards
components are subjected to, the BN models component states
as random variables and captures the probabilistic dependencies
between component and system performance. In addition, in an
environment of evolving information, for example, where inspec-
tions offer new insights into the current states of components, any
information entered into the BN propagates through the network to
update assessments of the systems. Finally, the BN as a graphical
framework enables transparent modeling of systems to facilitate
adoption by end-users.

One of the major challenges in the BN modeling of infrastruc-
ture systems is the exponentially increasing computational com-
plexity as the number of components in the system increases.
Previously, algorithms were proposed for BN modeling of binary
systems (Tien and Der Kiureghian 2013) to enable the study of
larger infrastructure systems within the BN framework (Tien and
Der Kiureghian 2016). However, this binary system formulation,
where components and the system are in one of two states (e.g., fail-
ure of survival) is not sufficient to describe the status of many infra-
structure components and systems (Tong and Tien 2016). This is
true for infrastructures including water, gas line, and transportation
networks, which are characterized by flow (e.g., of water supply,
natural gas, and vehicles) across the network. In these cases, if a
component is functioning at 50% of its maximum capacity, this
cannot be sufficiently defined as failure or survival. Compared with
binary systems, multistate system modeling provides a more

1Ph.D. Student, School of Civil and Environmental Engineering,
Georgia Institute of Technology, 631 Cherry St., Atlanta, GA 30332-0355
(corresponding author). ORCID: https://orcid.org/0000-0001-5574-3889
E-mail: yjtong@gatech.edu

2Assistant Professor, School of Civil and Environmental Engineering,
Georgia Institute of Technology, 631 Cherry St., Atlanta, GA 30332-0355.
E-mail: itien@ce.gatech.edu

Note. This manuscript was submitted on June 8, 2016; approved on
March 22, 2017; published online on June 19, 2017. Discussion period
open until November 19, 2017; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Computing
in Civil Engineering, © ASCE, ISSN 0887-3801.

© ASCE 04017051-1 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000699
https://orcid.org/0000-0001-5574-3889
mailto:yjtong@gatech.edu
mailto:itien@ce.gatech.edu


detailed description of system reliability and enables the analysis of
flow instead of connectivity networks. However, the dimensionality
of the problem also increases. This paper describes new algorithms
developed for BN modeling, inference, and reliability assessment
for these multistate flow networks.

The rest of the paper is organized as follows. The authors first
provide a brief background on the use of BNs for system reliability
assessment and describe the proposed BN system formulation. The
authors then present new algorithms for BN modeling of multistate
flow networks and for performing exact inference over these mod-
els. These include the proposed approach using compression to
reduce the memory storage requirements of the conditional prob-
ability tables associated with the BN and two heuristics to increase
the computational efficiency of the method. The authors apply the
algorithms to an example infrastructure system to demonstrate their
use for reliability assessment. Finally, the authors assess the perfor-
mance of the proposed algorithms compared to existing methods in
terms of both memory storage and computation time.

Background and Related Work

Bayesian Networks for System Reliability Assessment

Previous studies on the use of BNs for modeling system perfor-
mance have focused on generating BNs from conventional system
modeling methods, such as reliability block diagrams (Torres-
Toledano and Succar 1998; Kim 2011) and fault trees (Bobbio et al.
2001). These and other studies using BNs for system reliability as-
sessment (Mahadevan et al. 2001; Boudali and Dugan 2005;
Khakzad et al. 2011; Tien and Der Kiureghian 2015) have all as-
sumed binary component and system states. This allows the mod-
eling of systems characterized by connectivity, such as the power
distribution network in Tien and Der Kiureghian (2017), but not
flows.

In the study of multistate systems, Bouissou and Pourret (2003)
propose a BN-based method for performance evaluation of systems
with multiple states. However, the focus is on troubleshooting, or
identification of single causes of system failure. The assumption of
single-fault failures does not hold in the assessment of civil infra-
structure systems. The reduced capacity of multiple components
may lead to reduction in system performance. Gu and Yang (2013)

use BNs to assess the reliability of multistate systems. However, the
system studied consists of only six components, and even with this
small number of components, intermediate nodes are introduced in
the BN to enable computationally tractable calculations using the
traditional BN modeling method.

Bensi et al. (2013) propose a method for more efficient model-
ing of BNs, including for multistate systems. The study takes a top-
ology optimization approach to address the system size limitation
of BN models. However, the optimization algorithm must consider
all permutations of the indices of system components, and therefore
may itself become intractably large for large infrastructure systems.
Finally, a method based on the flow conservation law is proposed in
Yeh (2013) to assess the reliability of a multistate flow network.
However, the focus is on modeling deterioration effects, rather than
on quantifying the importance of individual component perfor-
mance on overall system reliability. In addition, the systems con-
sidered in this paper do not necessarily obey the flow conservation
law, i.e., that the flow into any node is equal to the flow out of that
node. For example, in the tested systems, a given level of flow may
enter a system component, but given the state of that component,
the flow out may be different. Thus, new methods are required for
the BN modeling of multistate networks.

BN System Formulation

For a network of n components, the BNmodel is as shown in Fig. 1.
The state of the system, represented as a system node, sys, is de-
pendent on the states of each of its constituent components, repre-
sented as component nodes C1; : : : ;Cn. In BN terminology,
C1; : : : ;Cn are called parents of sys.

The BN is a probabilistic graphical model. For the BN, each
node must be associated with a conditional probability table (CPT),
which gives the probability distribution of that node given each of
the mutually exclusive combinations of states of its parents. Nodes
that do not depend on other nodes are defined by marginal prob-
ability distributions. The reader is referred to texts such as Jensen
and Nielsen (2007) for further details on BNs.

Now suppose that the components and system can be in one of
multiple possible states, e.g., States 0, 1, 2, 3, or 4 denoting dis-
cretized values of flow capacity 0, 25, 50, 75, and 100% of maxi-
mum capacity, respectively. An example of the CPTassociated with
the system node for this multistate flow network is shown in
Table 1. Let n denote the number of components and m the number
of states of each component. For the columns indicating system
states, the authors use m columns to represent whether the system
is in that specific state. If so, the value in the column is 1; otherwise,
it is 0.

As the number of components in the system increases, the size
of the CPT as shown in Table 1 increases exponentially. In general,
the system states in the CPT are represented by m ×mn elements,
as shown in the m right-hand columns in Table 1. Because ofFig. 1. Bayesian network model of a system comprising n components

Table 1. Example Conditional Probability Table for a Multistate System

Row number C1 · · · Cn−1 Cn sys ¼ 0 sys ¼ 1 sys ¼ 2 : : : sys ¼ m − 1

1 0 · · · 0 0 1 0 0 : : : 0
2 0 · · · 0 1 1 0 0 : : : 0
..
. ..

. ..
. ..

. ..
.

— — — ..
.

—
mn − 4 4 · · · 4 0 0 1 0 · · · 0
mn − 3 4 · · · 4 1 0 0 1 · · · 0
mn − 2 4 · · ·mn − 1 · · · 4 2 0 0 0 · · · 1
mn − 1 4 · · · 4 3 0 0 0 · · · 0
mn 4 · · · 4 4 0 0 0 · · · 0

© ASCE 04017051-2 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



mutually exclusive system states, knowing the column in which the
1 value appears allows one to infer the values in the other columns
for that row. This reduces the number of elements to mn. However,
this value is still exponentially increasing with the number of com-
ponents in the system being modeled. For example, for a five-state
system of n ¼ 100 components, the full representation of the CPT
includes a minimum of 5100 ¼ 7.9 × 1069 elements. The exponen-
tial increase in the size of the CPT poses a significant memory stor-
age challenge in constructing and analyzing the BN. It quickly
renders the model intractable, necessitating the development of
new methods to enable the BN modeling of larger multistate flow
systems.

Proposed Algorithms for Bayesian Network
Modeling of Multistate Systems

Overview

The flowchart of the proposed algorithms is shown in Fig. 2. Each
of the modeling and analysis steps is described in detail in the fol-
lowing sections. First, to reduce the size of the CPT, the authors
substitute subsystems with components that are either in series
or parallel as supercomponents. Next, the authors generate the min-
imum cut sets (MCSs) of the network to determine the system state
for each combination of component states. To facilitate efficiency
of the compression algorithm that follows, the authors renumber the
supercomponents that now comprise the full system based on two
heuristics: whether they may be observed and their appearances in
the MCSs. This completes the formulation of the system for the
BN model.

Next, as shown in Fig. 2, to construct and perform inference
over the model, compression and preprocessing algorithms are
proposed. These algorithms are run simultaneously to reduce com-
putational time. To compress the system node CPT, the authors in-
troduce the idea of bundles representing repeated patterns of fixed
length in the system state in the CPT. The simultaneous preprocess-
ing of the information in the BN removes the need for storage of
intermediate factors of unobserved components during inference,
reducing both memory storage requirements and computational
time. At the end of the algorithm, the authors obtain a compressed
system CPT, cCPT, and dictionary of bundles, d, used in the com-
pression. These contain all the information for the BN model of the
system compressed in a lossless manner and without making any
approximations. The prior probability distribution for the system
before any observation is made, λ1, and subsequent distribution
and dictionary, λiþ1 and diþ1, respectively, are also obtained for
inference on posterior probability distributions given observations

on the system. Each of the elements of the proposed method is now
described in detail.

Supercomponent (Cc) Substitution

The total number of rows in the CPT for the system node in the BN
as shown in Fig. 1, representing, e.g., the performance of an infra-
structure system of n components, increases exponentially with n.
Decreasing n will significantly reduce the size and computational
requirements for the CPT. A common practice in the field of reli-
ability analysis is to combine components in similar configurations
into a single component, which the authors call a supercomponent,
denoted as Cc. The probability distribution of the ith supercompo-
nent Cci is denoted as pðCciÞ. The two most recognized configu-
rations are shown in Fig. 3 with components in series (left) or
parallel (right) subsystems. These simple configurations are widely
used in civil infrastructure systems, including redundant compo-
nents arranged in parallel in mesh-type networks and components
in series in linear pipeline systems. Instead of including all individ-
ual components in a series or parallel subsystem in the CPT, the
authors use one supercomponent with updated probability distribu-
tions to represent the subsystem. For consistency in the formu-
lation, a component that does not belong to a series or parallel
subsystem is treated as a supercomponent on its own. The proba-
bility distribution of a supercomponent can be easily determined by
the characteristic of a series or parallel system. In this paper, the
authors continually reduce the complexity of the network using
supercomponents until no two components in the system remain
in series or parallel.

One advantage of using supercomponents is that if additional
components are added to the structure of previously defined super-
components, this will not increase the size of the overall problem
because the number of supercomponents is not changed. Only the
probability distribution of that supercomponent need be modified.
Of course, more complicatedly connected subsystems other than
series and parallel configurations can be defined as supercompo-
nents. This may further simplify the structure of the system for spe-
cific cases, particularly if there are several repetitions of a similar
structure in the network. In this paper, without loss of generality,
the authors limit the discussion of supercomponents to series and
parallel subsystems.

Minimum Cut Set Generation and Renumbering
Components

In the proposed BN formulation, determination of the system state
in any row of the CPT is based on the component states and the set
of minimum cut sets or minimum link sets (MLSs) of the system.
The component states are determined by their row number in the
CPT as in Tien and Der Kiureghian (2016). Enumerating all MCSs
or MLSs for a system is an nondeterministic polynomial (NP)–time
hard problem, though several efficient methods have been
developed to do so (Suh and Chang 2000; Li et al. 2007;

Fig. 2. Flowchart of proposed algorithms for BN modeling of multi-
state systems

Fig. 3. Supercomponent configurations

© ASCE 04017051-3 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Benaddy and Wakrim 2012). The EG-CUT algorithm proposed by
Shin and Koh (1998) generates MCSs for undirected graphs by us-
ing a blocking mechanism. Minimum cut sets can be generated at
OðenÞ, where e is the number of edges, and n the number of nodes
in the graph. Depth-first search-based methods can also be used for
MLS generation (Jiang et al., 2016). These have been used to find
the MLSs for an infrastructure system of 127 nodes using a per-
sonal computer on the order of seconds (Johansen and Tien 2017).

Once the MCSs have been generated, the authors propose two
heuristics for numbering the components to further reduce the com-
putational complexity of the problem. The number of a component
affects where it appears in the system CPT, i.e., its column in the
left-hand side of the CPT as shown in Table 1. The heuristics pro-
posed to renumber the components result in reduced memory stor-
age required for inference and more efficient compression of the
initial system CPT. In general, selection of an optimal component
numbering in the network is an NP-hard problem (Dechter 1999).
In the proposed method, the first priority is to number the compo-
nents that may be observed to appear as far left in the CPT as pos-
sible. When the state of a component is observed, the probability
distribution of the system node is updated given that information
using Bayes’ rule. In most current infrastructure systems, particu-
larly water and gas line infrastructure, not all components have
monitoring capabilities. This heuristic takes advantage of this sys-
tem characteristic to reduce the size of the intermediate probability
distributions, denoted λ and called intermediate factors, calculated
during the inference process. For the variable elimination inference
method used in this paper, when a component is observed, only the
part of λ that corresponds with the component being in the ob-
served state need be considered. Numbering the monitored compo-
nents first to appear on the left side of the CPT reduces the storage
required for λ.

To facilitate more efficient compression of the system CPT us-
ing the algorithm described in the following section, the second part
of the renumbering heuristic is to number components with greater
influence in affecting the system state to appear to the left in the
CPT (after the monitored components previously described). Ap-
pearance in MCSs is used as a proxy for component influence and
criticality (Meng 1994). Specifically, after obtaining the MCSs, the
authors rank the influence of each component by its number of ap-
pearances in a MCS. The most influential component is the one that
appears in the most MCSs. By renumbering components based on
influence so that more influential components have smaller com-
ponent numbers results in a CPT where the system state does not
change rapidly from row to row in the CPT. This results in a more
regular pattern that improves the computational efficiency of
compression.

Algorithm for Compressing BN Model
With the BN model created after supercomponent substitution and
renumbering, the number of parents of the system node in Fig. 1 is
reduced to nc, where nc is the number of supercomponents. In
constructing the CPT, the authors use the supercomponents in-
stead of original components. Rather than storing all elements in
the full CPT, an algorithm to compress the information in the

CPT is proposed to reduce the memory storage requirements
and make the BN modeling of larger civil infrastructure systems
possible. First, the component states in the CPT (left-hand col-
umns in Table 1) need not be stored, as long as they follow a
predetermined pattern. Next, compression is accomplished by
processing through each row of the full system CPT and storing
the values that appear in the system state columns (right-hand
columns in Table 1) in a lossless compressed form. To do this,
the authors introduce the idea of bundles. A bundle is a pattern
in the values of the system state of fixed length that is propor-
tional to the number of states. These are more specific than the
general phrases terminology originally proposed by Ziv and
Lempel (1977). However, consistent with previous work, this
method stores identified bundles in a dictionary. The com-
pressed CPT therefore comprises detected bundles, or patterns
of sequences in the system columns of the CPT, which are ref-
erenced from the dictionary.

The idea of bundles is important to remove the need to calculate
certain remainder values when processing through the CPT as in
the previously developed algorithms for BN modeling of binary
systems. The reader is referred to Tien (2014) for details in the cal-
culation of this remainder. As the number of possible states of the
system increases, so does the likelihood of having remainders.
Employing bundles removes the possibility of remainders. Let
m denote the number of states of the components and system. With
fixed-length bundles of lengths that are multiples of m stored in the
dictionary rather than allowing phrases of general length, the CPT
is thus compressed in groups proportional to m, removing any
remainders from the compression process.

The proposed compression algorithm operates as follows. The
outputs of the algorithm are the compressed system CPT, cCPT,
and the accompanying dictionary of bundles, d. Examples of the
algorithm are shown in Figs. 4 and 5. The full flowchart of the
algorithm is shown in Fig. 6.

For each row nr ¼ 1; 2; : : : ;mnc of the system CPT, the states of
the supercomponents S1; : : : ; Snc represented in that row are com-
puted based on the specific pattern used in defining the CPT. The
CPT, as shown in Table 1, is constructed with supercomponents
Cc1; : : : ;Ccnc organized from left to right. Each row of the CPT
is one of the mutually exclusive combinations of component states.
The authors determine the state of component Cci; i ¼ 1; : : : ; nc in
row nr of the CPT according to Eq. (1)

Fig. 4. Illustration of example three-state system CPT compression

Fig. 5. Illustration of three-state system CPT compression after com-
bination of phrases

© ASCE 04017051-4 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Si ¼ mod

�
ceil

�
nr

mnc−i

�
− 1;m

�
ð1Þ

where ceilðxÞ is the value of x rounded up to the nearest integer; and
modða;mÞ returns the remainder after division of a by m. The pos-
sible states of the component Cci ∈ f0; 1; : : : ;m − 1g.

For each row, the component states are then checked against
fMCSg (indicating the set of minimum cut sets of the system) by
Eq. (2) to determine the state of the system in row nr, denoted sysnr

sysnr ¼ min
j¼1; : : : ;nMCS

fmaxfMCSj;nrgg ð2Þ

where nMCS denotes the number of MCSs of the system; and any
one MCSj;nr ; j ¼ 1; : : : ; nMCS contains the states of the compo-
nents comprising that MCS in row nr of the CPT. From the value
of sysnr , the authors obtain the corresponding binary values in the
m entries for the system state in row nr.

In addition to storing phrases as bundles of fixed length propor-
tional to the number of states m, the authors have found that addi-
tional computational efficiencies can be achieved by combining
multiple bundles. This is particularly effective if there are repeated
patterns in the occurrence of bundles. For example, consider a three-
state system with dictionary and compressed system node CPT
represented by cCPT as shown in Fig. 4. In this case, the pattern in
bundles in cCPT is represented by two repetitions of Bundle 2,
then 1 repetition of Bundle 1. The memory storage requirements for
the compressed CPT can be reduced significantly by defining a new
Bundle 3 comprising the bundle f0; 1; 1; 0; 1; 1; 0; 0; 0g as shown in
Fig. 5. The authors call this new, longer bundle a clip. Specifically,
the original memory storage requirement is ðmemory for dictionaryÞþ
ðmemory for cCPTÞ ¼ ð3þ 3Þ þ ð201 × 2Þ ¼ 408 elements, while
combining the bundles into a clip results in a memory storage re-
quirement of ð3þ 3þ 9Þ þ ð2 × 2Þ ¼ 19 elements. Though the
size of the dictionary slightly increases with the longer-length clip,
the size of the compressed CPT is significantly reduced. Note that
combining bundles is not beneficial in all cases. For example, if
there are 50 repetitions of Bundle 2 followed by 50 repetitions of
Bundle 1, the length of the clip itself would be ð50þ 50Þ × 3 ¼
300 elements.

To identify repeated patterns among bundles to combine them
into clips, the authors process through cCPT from left to right
through the columns of cCPT. For improved efficiency of repeated
pattern finding, the length of the clip was limited to the number of

states, i.e., for a three-state system, the authors do not look for a
repeated pattern over the length of three. Performing this repeat
check multiple times, i.e., combining repeated clips into new, lon-
ger clips, was also considered. However, this required additional
computational time and did not result in savings in memory stor-
age. Therefore, the repeat check algorithm is run through the data
once for full compression.

Algorithm for Preprocessing BN Model
Once the BN has been constructed, inference is required to draw
conclusions about the system. In the proposed method, a prepro-
cessing algorithm is used as a prerequisite for inference. This is
done simultaneously with the compression algorithm to eliminate
the need to run through the data twice and to further reduce memory
storage requirements. The preprocessing algorithm is based on the
classical variable elimination algorithm (Dechter 1999). In this
algorithm, inference is achieved by eliminating all other nodes in
the network until arriving at the node of interest. Elimination of
each node corresponds to summing of the joint distribution over
all states of the node, resulting in an intermediate factor λ that
is used during the next step of elimination.

Consider nc supercomponents of a system Cc1; : : : ;Ccnc with
probability distributions pðCc1Þ; : : : ;pðCcncÞ. If the maximum
supercomponent number of the monitored components is i, then
the intermediate factor of interest is λiþ1. In a backward elimination
order of k ¼ fnc; nc−1; : : : ; iþ 1g, the elimination of a component
k results in an intermediate factor λk. At each elimination step, the
authors multiply the values of the elements in λk with the proba-
bility distribution of the eliminating component to obtain λk−1 in
the next step. This algorithm results in exact inference over the
network.

The key to computationally tractable exact inference in BNs
with many parent nodes using the proposed compression approach
is that the intermediate factor λiþ1 is also stored in compressed
form following the same methodology used to create cCPT. This
is done using the proposed preprocessing algorithm that is run si-
multaneously with the compression algorithm. Preprocessing is
possible because the full intermediate factor does not have to be
constructed for the variable elimination method to proceed. For ex-
ample, as the authors process through the CPT from the first row to
the mth row, the first entry of λnc is already determined. The fol-
lowing rows will not affect the value of that first entry and after
calculating the value, the first mth entries can be cleared from stor-
age. The authors need not present at any time the full λnc. Similarly,

Fig. 6. Flowchart of compression algorithm

© ASCE 04017051-5 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



once the mth entry is stored in λk, the next entry for λk−1 can be
determined. Because the intermediate factor of interest is λiþ1, for
all other intermediate factors, storage of onlym entries for each λ is
needed at a time.

Let ek denote the values currently stored in λk. When the nrth
row is processed, the updating rule for intermediate factors λk;
k > iþ 1 is to use the m entries in ek and pðCck−1Þ to create the
next entry for ek−1. This is done with the calculation shown in
Eq. (3)

e 0
k ¼ ek½PðCck ¼ 0Þ · · · PðCck ¼ m − 1Þ �T ð3Þ

where e 0
k indicates the next entry for λk−1. The contents in ek can

now be cleared. Once the authors arrive at λiþ1, all entries are
stored for future use in inference using the compression method-
ology. Thus, CPT and λiþ1 are compressed simultaneously. The
algorithms operate as follows.

Preprocessing Algorithm

Input: nc, m, pðCcÞ, i
Output: λiþ1, diþ1, λ1

For nr from 1 to mnc

Determine system state for row number nr by Eqs. (1) and (2)
Set k ¼ nc, N ¼ floorðnrmÞ, R ¼ modðnr;mÞ
While R ¼ 0
Update ek to e 0

k based on pðCckÞ from pðCcÞ by Eq. (3).
Update contents in ek and ek−1.
Update k ¼ k − 1, N ¼ floorðNmÞ, R ¼ modðN;mÞ
End while
Compress entries in λiþ1 and companion dictionary diþ1 using the
compression algorithm
End for

pðsysÞ ¼ λ1

Compression Algorithm

Input: nc, m, fMCSg, pðCcÞ, i
Output: cCPT, d, λiþ1, diþ1, λ1
For nr←1 to mnc , do as shown in Fig. 6

Test Application

The proposed algorithms are now applied to a test application to
illustrate their use. The example system is adopted from Bensi et al.
(2013) with added complexity to demonstrate the methodology.
The system has previously been used as an example of an infra-
structure distribution network, providing a resource (e.g., water or
gas) from a source to a sink as in Tien and Der Kiureghian (2015).
In this paper, the authors begin with this network as shown in
Fig. 7. However, because of the combination of series and parallel
configurations of components C1–C8, it can be reduced into a
single supercomponent. Therefore, the authors call this system

supercomponent Cci and increase the complexity of the system
to form the network shown in Fig. 8. This network is formed as a
combination of subsystems. Representing the network in Fig. 8
using supercomponents results in the system shown in Fig. 9,
with each supercomponent Cci; i ¼ 1; : : : ; 7 as shown in Fig. 7.
Thus, the full network of 56 components is represented with 7
supercomponents. Compared to the system in Fig. 7 that can be
reduced to one supercomponent, the network shown in Fig. 9 is
irreducible using the described supercomponent methodology.
Therefore, this network is chosen to test performance of the
algorithms.

Suppose all components are independent and can be in one of
five possible states modeling the level of flow compared to maxi-
mum flow capacity. Let state Si ¼ f0; 1; 2; 3; 4g denote flow = 0,
25, 50, 75, and 100% of maximum capacity. Prior probability dis-
tributions for each component are listed in Table 2, where Si de-
notes the state of component Ci. The resulting prior distribution for
each supercomponent Cci is listed in Table 3. Suppose components

Fig. 7. Supercomponent Cci configuration

Fig. 8. Example system

Fig. 9. Example system with supercomponent representation

Table 2. Prior Probability Distributions for Components Constituting
Supercomponent Cci

Si pðC1Þ pðC2Þ pðC3Þ pðC4Þ pðC5Þ pðC6Þ pðC7Þ pðC8Þ
0 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04
1 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12
2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
3 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28
4 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36

Table 3. Prior Probability Distribution for Supercomponent Cci

Si pðCciÞ
0 0.0986
1 0.2364
2 0.3257
3 0.2692
4 0.0701

© ASCE 04017051-6 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



C1 of Cc1 and Cc2 are instrumented and can be monitored for up-
dating of the system state. For the reduced system shown in Fig. 9,
the set of MCSs is fMCSg ¼ fðCc1Þ; ðCc7Þ; ðCc2; Cc3Þ;
ðCc5; Cc6Þ; ðCc2; Cc4; Cc6Þ; ðCc3; Cc4; Cc5Þg.

Results of Implementing Compression and
Preprocessing Algorithms

To implement the compression and preprocessing algorithms, for
each row in the system CPT, the states of the components are first
determined by Eq. (1). The state of the system is then found using
MCSs as shown in Eq. (2). The resulting dictionary, d, and
compressed system CPT, cCPT, obtained after implementing
the compression algorithm are shown in Tables 4 and 5, respec-
tively. After compression, there are a total of five bundles identified
and cCPT contains 120 columns. Note that Bundle 4 is a clip com-
bining four repetitions of Bundle 3 and one repetition of Bundle 2.
Bundle 5 combines 24 repetitions of Bundle 3 and one repetition of
Bundle 2. Compared to 78,125 rows of the full CPT, the com-
pressed form comprising 2025 total elements achieves orders
of magnitude savings in memory storage for the CPT. This com-
pression is done in a lossless manner and without making any
approximations.

While the compression algorithm is implemented for the sys-
tem CPT, Pðsys ¼ 0Þ ¼ 0.2045 is calculated simultaneously us-
ing the preprocessing algorithm. The probability distribution
over the system state will be updated if the monitored compo-
nents are identified to be in a specific state. In this case, if com-
ponents C1 of Cc1 and Cc2 are monitored, then the intermediate
factor of interest is λ3. This is created simultaneously using the
preprocessing algorithm as the authors compress the original
CPT. The d3 and the compressed λ3 denoted cλ3 are as listed
in Tables 6 and 7.

Inference

Once d3 and cλ3 are obtained, it is possible to conduct exact infer-
ence over the network. Suppose that C1 in both Cc1 and Cc2 are in
State 0. The authors then update the prior distribution of C1 as
PðC1 ¼ 0Þ ¼ 1. For all other statesm ¼ 1; : : : ; 4, PðC1 ¼ mÞ ¼ 0.
As a result, the probability distribution for supercomponents Cc1 and
Cc2 are updated as: PðCc ¼ 0Þ ¼ 0.1031, PðCc ¼ 1Þ ¼ 0.2580,
PðCc ¼ 2Þ ¼ 0.3382, PðCc ¼ 3Þ ¼ 0.2453, and PðCc ¼ 4Þ ¼
0.0554. Then the new Cc distributions are used with λ3 to obtain
the updated system state distribution Pðsys ¼ 0jC1 inCC1 and
CC2 ¼ 0Þ ¼ 0.2088. This represents a slight increase in the prob-
ability of failure from 0.2045. This is attributable to C1 being one
component of a parallel subsystem within only two supercompo-
nents. In general, once the compressed cλiþ1 is obtained from the
preprocessing algorithm, the inference is computed using simple
calculations based on cλiþ1.

In many system reliability problems, an observation at the sys-
tem level is made, and the objective is to identify the components
most likely to have led to that system behavior. This is called back-
ward inference. Part of the power of BNs is in its ability to perform
backward inference by Bayes’ rule: pðCjCciÞ ¼ pðCcijCÞpðCÞ=
pðCciÞ and pðCcijsysÞ ¼ pðsysjCciÞpðCciÞ=pðsysÞ. An example
of the results of this inference is given in Fig. 10, which shows
the updated probability distributions of each component being
in different states given a supercomponent Cci being in State 2.
Fig. 11 shows the updated probability distributions of each
supercomponent being in different states given the system being
in State 2. When researchers have evidence of underperformance
at the system level, the results in Fig. 10 provide information on
the importance of individual supercomponents comprising the
system. Using the chain rule and total probability, the influence
of specific components constituting the supercomponents is
determined by pðCjsysÞ ¼ P

Cci
pðCjCci; sysÞpðCcijsysÞ ¼P

Cci
pðCjCciÞpðCcijsysÞ. These inference results enable identifi-

cation of critical components in the system to inform decision
making in the maintenance and reinforcement of the critical com-
ponents to minimize risk of system underperformance.

Algorithm Performance: Memory Storage

In the previous section, the authors applied the proposed algorithms
to an example system to demonstrate their use. As the objective
of the algorithms is to reduce the memory storage requirements
and increase the computational efficiency of BNmodeling of multi-
state flow networks as the number of components in the system
increases, the performance of the proposed algorithms is now com-
pared with existing methods for modeling systems of increasing
size.

First, the performance is assessed in terms of memory storage.
The existing method for comparison is the junction tree (JT) algo-
rithm as implemented in the Bayes Net Toolbox in MATLAB. The
JT algorithm is generally known for its efficiency in performing
exact inference for graphical networks (Spiegelhalter et al 1993).
The authors increase the size of the system by adding to the last
supercomponent components in parallel up to a total number of
supercomponents n as shown in Fig. 12. As the purpose is to

Table 4. Dictionary for cCPT: d

Bundle number Bundle

1 ð0; 0; 0; 0; 0Þ
2 ð1; 1; 1; 1; 1Þ
3 ð1; 0; 0; 0; 0Þ
4 ð1,0; 0,0; 0,1; 0,0; : : : ; 1,1; 1,1; 1Þ
5 ð1,0; 0,0; 0,1; 0,0; : : : ; 1,1; 1,1; 1Þ

Table 5. Bundle Number and Repetitions for cCPT

Bundle number Number of repetitions of bundle

2 3,251
5 4
4 5
5 4
: : : : : :
2 1
5 23
3 24

Table 6. Dictionary for cλ3: d3

Bundle number Bundle

1 ð1,1; 1,1; 1Þ
2 ð0.2025; 0.1081; 0.1081; 0.1081; 0.1081Þ

Table 7. Bundle Number and Repetitions for cλ3

Bundle number Number of repetitions of bundle

1 1
2 4

© ASCE 04017051-7 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



analyze the effect on compression of increasing the number of
components, supercomponents Cc7 to Ccn are not combined into
a single supercomponent. Similar analyses can be conducted
for increasing the number of components elsewhere in the
system.

The maximum number of elements required to be stored to cre-
ate the BN model and for inference is used as a proxy for memory
storage demand. Results are based on the performance of the algo-
rithms run in MATLAB on a 16 GB RAM computer. In both meth-
ods, supercomponents are employed for a fair comparison. For the
system in Fig. 12, when n reaches 12, the storage demand for the JT
algorithm exceeds memory. Results for the JT compared to the pro-
posed algorithms as the number of supercomponents in the system
increases is shown in Fig. 13. Table 8 lists these values and com-
putes the data compression ratio of the proposed algorithms,
i.e., the ratio of the number of elements required for the JT com-
pared to proposed algorithms.

In Fig. 13 and Table 8, the values being recorded are the maxi-
mum number of elements stored during construction of and infer-
ence over the BN for systems of increasing size. For the proposed
algorithms, the value includes both the elements in compressed in-
termediate factors cλk and the bundles in the dictionaries dk used in

Fig. 10. Updated component probability distributions given a supercomponent Cc in State 2

Fig. 11. Updated supercomponent probability distributions given system in State 2

Fig. 12. Expanded example system

© ASCE 04017051-8 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



defining cλk. It is shown in Fig. 13 that the proposed algorithms
achieve significant savings in the memory storage requirement for
the BN model. The maximum number of elements stored is orders
of magnitude smaller than required for the JT algorithm. For this
example, the memory storage in both cases increases exponentially
with system size. However, the base of the increase for the pro-
posed algorithms is approximately 2 compared to 5 for JT. For the
11 supercomponents case, which represents a system of 88 com-
ponents, the proposed algorithms require 26,580 elements to be
stored. This is compared to 588 ¼ 3.23 × 1061 elements required
for the original formulation.

For the JT algorithm, when the number of supercomponents in
the system increases to 12, the size of the CPT exceeds the available
memory storage capacity and the BN model cannot be constructed.
Further, the last row in Table 8 shows the number of times by which
the data has been compressed, i.e., the data compression ratio, us-
ing the proposed algorithms. Note again that the compression is
lossless, so the authors are not losing any information nor are they
making any approximations during the compression and inference
processes. From the results, it is shown that as the size of the system
increases, so does the compression efficiency of the proposed al-
gorithms, with an exponentially increasing data compression ratio.

Algorithm Performance: Computational Efficiency

Now the performance of the proposed algorithms is examined in
terms of computational efficiency. Table 9 lists the computation
time needed for calculation over the network for JT compared
to proposed algorithms. The JT algorithm time includes construct-
ing the full CPT and calculating the prior probability distribution
pðsysÞ. The proposed algorithms time includes computation
required for both compression and preprocessing information in
the BN.

From Table 9, it is shown that the computation times increase
as the size of the system increases, a well-known example of the
problem of dimensionality. The time required for the proposed al-
gorithm is approximately 1.5 times that of the JT algorithm. How-
ever, with the large savings in memory storage, the authors consider
the performance metrics for the proposed algorithms an acceptable
tradeoff. For example, for a system of 11 supercomponents, the
data is compressed by 1,837 times while the computation time in-
creases by 1.51 times.

Memory compared to computation time requirements are also
fundamentally different. Memory storage is a hard constraint. If
the maximum required memory exceeds storage capacity of a pro-
gram or machine, no further analysis can be performed. While it is
true that memory can be distributed, e.g., in cloud storage, a hard
limit still exists. In contrast, computation time is more flexible. In-
deed, methods such as parallel computing exist to address compu-
tation time. Further, for the proposed algorithms, the compression
efficiency grows significantly as the number of components in-
creases, while the computation time ratio remains stable. Thus,
the algorithms enable larger multistate flow systems to be modeled
using BNs than previously possible for probabilistic inference and
reliability assessment.

Conclusion

In this paper, the authors propose new algorithms for constructing
and performing inference in BN models for reliability assessment
of multistate infrastructure flow networks. The new algorithms
address the major system size limitation in the use of BNs for mod-
eling large systems and the increased complexity of modeling
multistate flow compared to binary connectivity networks. They
include a supercomponent substitution method, which reduces the
total number of nodes in the BN, and component renumbering
heuristics to increase computational efficiency. Algorithms to loss-
lessly compress the system CPT while simultaneously calculating
and compressing intermediate factors for exact inference are then
proposed. The performance of the proposed algorithms is tested
using an example system. Compared with existing methods, the
new algorithms achieve orders of magnitude savings in memory
storage. This is accompanied by a slight decrease in computational
efficiency. However, the compression efficiency improves with an
exponentially increasing data compression ratio, while the compu-
tation time ratio remains stable as the size of the system increases.
Together these algorithms enable multistate flow networks to be

Fig. 13. Memory storage requirements of JT compared to proposed
algorithms

Table 8. Comparison of Memory Storage Required for JT versus Proposed Algorithms

Methods

Number of supercomponents

7 8 9 10 11

JT 78,125 390,625 1,953,125 9,765,625 48,828,125
Proposed 2,025 11,080 11,580 14,080 26,580
Data compression ratio 38.58 35.26 168.66 693.58 1,837.03

Table 9. Comparison of Computation Time for Calculation for JT versus
Proposed Algorithms (s)

Methods

Number of supercomponents

7 8 9 10 11

JT 24.01 131.29 710.01 3,564.23 17,563.11
Proposed 35.00 188.68 1,077.10 6,273.59 26,519.32
Proposed/JT 1.46 1.44 1.52 1.76 1.51

© ASCE 04017051-9 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



modeled as BNs. As infrastructures age and are subjected to in-
creasing hazards, the use of BNs for assessment over a variety
of scenarios, including updating with new information, enables pri-
oritization of components and decision making across the network
to increase the reliability of these critical systems.

Acknowledgments

Support for this work by the National Science Foundation through
Grant No. CNS-1541074 is acknowledged.

References

Benaddy, M., and Wakrim, M. (2012). “Cutset enumerating and network
reliability computing by a new recursive algorithm and inclusion exclu-
sion principle.” Int. J. Computer Appl., 45(16), 22–25.

Bensi, M., Der Kiureghian, A., and Straub, D. (2013). “Efficient Bayesian
network modeling of systems.” Reliab. Eng. Syst. Saf., 112, 200–213.

Bobbio, A., Portinale, L, Minichino, M., and Ciancamerla, E. (2001).
“Improving the analysis of dependable systems by mapping fault trees
into Bayesian networks.” Reliab. Eng. Syst. Saf., 71(3), 249–260.

Boudali, H., and Dugan, J. B. (2005). “A discrete-time Bayesian network
reliability modeling and analysis framework.” Reliab. Eng. Syst. Saf.,
87(3), 337–349.

Bouissou, M., and Pourret, O. (2003). “A Bayesian belief network based
method for performance evaluation and troubleshooting of multistate
systems.” Int. J. Reliab. Qual. Saf. Eng., 10(4), 407–416.

Dechter, R. (1999). “Bucket elimination: A unifying framework for
reasoning.” Artif. Intell., 113(1–2), 41–85.

Gu, Y. K., and Yang, Z. X. (2013). “Reliability analysis of multi-state sys-
tems based on Bayesian network.” 2013 Int. Conf. on Quality, Reliabil-
ity, Risk, Maintenance, and Safety Engineering, IEEE, Piscataway, NJ,
332–336.

Jensen, F. V., and Nielsen, T. D. (2007). Bayesian networks and decision
graphs, 2nd Ed., Springer, New York.

Jiang, X., Bai, R., Atkin, J., and Kendall, G. (2016). “A scheme for deter-
mining vehicle routes based on arc-based service network design.”
Inf. Syst. Oper. Res., 55(1), 16–37.

Johansen, C., Horney, J., and Tien, I. (2016). “Metrics for evaluating and
improving community resilience.” J. Infrastruct. Syst, 10.1061/(ASCE)
IS.1943-555X.0000329, 04016032.

Johansen, C., and Tien, I. (2017). “Probabilistic multi-scale modeling of
interdependencies between critical infrastructure systems for resil-
ience.” Sustainable Resilient Infrastruct., in press.

Khakzad, N., Khan, F., and Amyotte, P. (2011). “Safety analysis in process
facilities: Comparison of fault tree and Bayesian network approaches.”
Reliab. Eng. Syst. Saf., 96(8), 925–932.

Kim, M. C. (2011). “Reliability block diagram with general gates and its
application to system reliability analysis.” Ann. Nucl. Energy, 38(11),
2456–2461.

Li, J., Qian, Y., and Liu, W. (2007). “Minimal cut-based recursive decom-
position algorithm for seismic reliability evaluation of lifeline
networks.” Earthquake Eng. Eng. Vib., 6(1), 21–28.

Mahadevan, S., Zhang, R., and Smith, N. (2001). “Bayesian networks for
system reliability reassessment.” Struct. Saf., 23(3), 231–251.

MATLAB [Computer software]. MathWorks, Natick, MA.
Meng, F. C. (1994). “Comparing criticality of nodes via minimal cut (path)

sets for coherent systems.” Probab. Eng. Inf. Sci., 8(1), 79–87.
Shin, Y. Y., and Koh, J. S. (1998). “An algorithm for generating minimal

cutsets of undirected graphs.” Korean J. Comput. Appl. Math., 5(3),
681–693.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., and Cowell, R. G.
(1993). “Bayesian analysis in expert systems.” Stat. Sci., 8(3), 219–247.

Suh, H., and Chang, C. K. (2000). “Algorithms for the minimal cutsets
enumeration of networks by graph search and branch addition.” Proc.,
25th Annual IEEE Conf. on Local Computer Networks, IEEE, Piscat-
away, NJ, 100–110.

Tien, I. (2014). “Bayesian network methods for modeling and reliability
assessment of infrastructure systems.” Ph.D. thesis, Univ. of California,
Berkeley, CA.

Tien, I., and Der Kiureghian, A. (2013). “Compression algorithm for
Bayesian network modeling of binary systems.” Safety, reliability, risk
and life-cycle performance of structures and infrastructures, G.
Deodatis, B. Ellingwood, and D. Frangopol, eds., CRC Press,
New York, 3075–3081.

Tien, I., and Der Kiureghian, A. (2015). “Compression and inference algo-
rithms for Bayesian network modeling of infrastructure systems.” Proc.,
12th Int. Conf. on Applications of Statistics and Probability in Civil
Engineering, T. Haukaas, ed., Vancouver, Canada.

Tien, I., and Der Kiureghian, A. (2016). “Algorithms for Bayesian network
modeling and reliability assessment of infrastructure systems.” Reliab.
Eng. Syst. Saf., 156, 134–147.

Tien, I., and Der Kiureghian, A. (2017). “Reliability assessment of
critical infrastructure using Bayesian network.” J. Infrastruct. Syst.,
in press.

Tong, Y., and Tien, I. (2016). “Algorithms for Bayesian network modeling
of multi-state infrastructure flow systems.” Engineering Mechanics
Institute and Probabilistic Mechanics and Reliability Conf., Nashville,
TN.

Torres-Toledano, J. G., and Succar, L. E. (1998). Bayesian networks for
reliability analysis of complex systems, Springer, Berlin, 195–206.

Yeh, W. C. (2013). “Evaluating the reliability of a novel deterioration-effect
multi-state flow network.” Inf. Sci., 243, 75–85.

Ziv, J., and Lempel, A. (1977). “A universal algorithm for sequential data
compression.” IEEE Trans Inf. Theory, 23(3), 337–343.

© ASCE 04017051-10 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2017, 31(5): 04017051 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
06

/2
0/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1016/j.ress.2012.11.017
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1016/j.ress.2004.06.004
https://doi.org/10.1016/j.ress.2004.06.004
https://doi.org/10.1142/S0218539303001275
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000329
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000329
https://doi.org/10.1016/j.ress.2011.03.012
https://doi.org/10.1016/j.anucene.2011.07.013
https://doi.org/10.1016/j.anucene.2011.07.013
https://doi.org/10.1007/s11803-007-0662-1
https://doi.org/10.1016/S0167-4730(01)00017-0
https://doi.org/10.1017/S0269964800003211
https://doi.org/10.1007/BF03008891
https://doi.org/10.1007/BF03008891
https://doi.org/10.1214/ss/1177010888
https://doi.org/10.1016/j.ress.2016.07.022
https://doi.org/10.1016/j.ress.2016.07.022
https://doi.org/10.1016/j.ins.2013.02.016
https://doi.org/10.1109/TIT.1977.1055714

