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A probabilistic framework for Bayesian inference combined with extreme values of Gaussian processes is
proposed to assess the maximum of the response of an uncertain structure instrumented with sensors
and subject to a stochastic load. The framework is applied to the analysis of the inter-story drift of a
multi-story shear-type building under seismic hazard using measurements collected by accelerometers.
A cascade of two dynamic systems is proposed to model the stochastic ground motion and the response
of the structure. We present an approximate analytical solution to estimate the distribution of the max-
imum response, and verify the accuracy and limitations of this solution against simulation results.
Finally, robustness of the proposed framework to system uncertainties, including uncertainties in the
structural characteristics, ground characteristics, and input motion parameters, is investigated.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Monitoring of instrumented civil structures and infrastructure
is becoming ubiquitous, as sensors continue to decrease in price
and increase in capability. Structural health monitoring (SHM)
methods have been developed to both improve the data collected
through the development of new sensor devices, as well as facili-
tate how this data is used to learn about the system. The focus of
this paper is on the latter, in how we process sensor data to per-
form inference on the structural response.

Monitoring systems provide real-time measurements on the
dynamic response of structures during extreme events. Informa-
tion about the structural model and the stochastic load can be inte-
grated into the data processing to probabilistically evaluate
features relevant to the post-event condition assessment, such as
extreme values of key structural responses.

To do this task, in this paper we propose a framework based on
the Kalman smoother for Gaussian linear systems and extreme
value analysis of Gaussian processes. The objective is to accurately
assess the maximum of the response of a linear structure under
stochastic excitation by processing noisy sensor measurements.
We apply the framework to the estimation of the inter-story drift
of a multi-story, shear-type building under seismic hazard using
information from measurements of accelerometers placed at
selected floors of the building. We develop a cascade of two sys-
tems, modeling the seismic ground motion and the vibrating struc-
ture. We derive an analytical solution to estimate the distribution
of the peak response, conditioned on the measurements, and
results from this solution are compared with those obtained from
Monte Carlo simulations. Finally, we show the proposed proba-
bilistic framework to be robust to system uncertainties, including
uncertainties in the structural characteristics, ground characteris-
tics, and input motion parameters. This work informs decision
making in the management of structures subject to seismic hazard
and for the development and design of smart SHM systems.
2. Background and related work

For Gaussian linear models, the Kalman Filter (KF) [1] and Kal-
man Smoother (KS) [2] can be used to estimate the system state for
dynamically evolving systems by processing sparse measures of
the system response. While the KF algorithm computes the poste-
rior probability of the system given past and present measure-
ments, the KS algorithm allows, after an event, to compute the
posterior distribution with respect to all measurements collected
even after the time at which the state is being evaluated. The KF
and KS allow computation of not only the marginal probability of
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system state at each time, but also to sample trajectories. The
reader is referred to the texts [3,4] for treatment of the KF and
KS models.

As the KF and KS perform probabilistic analysis of a dynamic
system, they are ideal for structural health monitoring (SHM)
applications, where observations of a structure are used to charac-
terize and assess the state of the structure over time. In this study,
we are interested in performing inference on the dynamically
evolving response of a structure when it is subjected to a stochastic
excitation, e.g., an earthquake, based on uncertain information, e.g.,
sensor measurements.

KF and KS are algorithms for linear Gaussian models, which can
be seen as special cases of the Dynamic Bayesian Network (DBN).
The DBN is a probabilistic framework that models the evolution
of a system or process over time. It consists of a sequence of con-
nected Bayesian Networks (BNs), each representing the system at
a time slice t [5]. The evolution in time is represented by directed
links between nodes of successive time-slice BNs that carry infor-
mation on temporal dependencies of the respective processes.
Inference on the DBN for linear Gaussian systems can be performed
using the KF and KS.
2.1. Probabilistic frameworks for structural health monitoring

Applications of the KF in SHM can be found in [6–8]. In these
works, the Extended KF is used for system identification of linear
and nonlinear systems. Studies using Bayesian methods in SHM
have focused on identifying modal parameters of a structure and
performing damage detection. A Bayesian framework to obtain dis-
tributions of the modal parameters, including the most probable
values of the parameters and their uncertainties, is proposed in
[9]. Au et al. [10] and Katafygiotis and Yuen [11] used data from
ambient vibrations for modal identification. A Bayesian approach
is proposed in [12] to account for uncertainties in the structural
system to determine the existence and location of damage. Vanik
et al. [13] used the proposed approach to continually update the
stiffness parameters of a structure with a high likelihood of reduc-
tion in stiffness at a particular location used as a proxy for damage
at that location. Rather than damage detection, we are interested in
performing inference on the state of a structural system as it is
subjected to a specific stochastic hazard.

For the monitoring of structures during extreme events, SHM
systems are proposed in [14,15]. These studies are focused on
the hardware aspects of the system rather than on performing
probabilistic analysis of the data collected using these systems.
Wu and Beck [16] used a Bayesian framework and expanded their
analysis to the monitoring of a system both before and after an
earthquake, with pre-event prognosis and post-event diagnosis.
The response of the structure during the seismic event, however,
is not analyzed. In general, previous studies using Bayesian meth-
ods for SHM limit the use of the Bayes rule to the standard Baye-
sian updating of system parameters. In this paper, we present a
probabilistic framework to estimate the evolution of the structural
response to stochastic excitation based on sensor measurements,
and show the methodology to be robust to system uncertainties
in performing this inference.
Fig. 1. Dynamical system model, consisting of ground and structural sub-systems.
3. Method

3.1. System formulation

In the following, a capital bold letter denotes a matrix, such as
the mass matrix M, a small bold letter denotes a vector, as in the
vector of structural displacements relative to the ground usðtÞ,
and a small italic letter denotes a scalar quantity, such as the
ground displacement ugðtÞ. Displacement and acceleration are
denoted u and a, respectively, while zðtÞ collects displacement
and velocity values. Subscripts g and s indicate quantities for the
ground and structure, respectively.

We model the dynamical system as a cascaded system of two
sub-systems: a ground sub-system and a structural sub-system,
as shown in Fig. 1.

The ground dynamical sub-system takes a modulated white-
noise input wðtÞ, representing the motion at the bedrock, and out-
puts the acceleration agðtÞ on the ground surface. The structural
dynamical sub-system takes agðtÞ as well as ambient noise as exci-
tation and produces the structural response usðtÞ, the vector of
nodal displacements relative to the ground. Our interest lies not
only in inferring the instantaneous values of usðtÞ and related
responses, but also in their peak values over time. This study
assumes linear structural behavior as well as Gaussianity of both
the earthquake and ambient-vibration input excitations to allow
the use of Gaussian models and the KF described in the following
sections. The proposed method can be extended to analyze nonlin-
ear structural behavior by relaxing the assumption of a linear
Gaussian system. As such, the current study is appropriate for
operating-basis seismic events.

3.1.1. Ground dynamical sub-system
The equation describing the motion on the ground surface rela-

tive to the bedrock is given by

€ug þ 2ngxg _ug þx2
gug ¼ �w ð1Þ

where xg and ng define the angular frequency and damping ratio of
the ground filter and w denotes the modulated white-noise acceler-
ation at the bedrock. Written in first-order form with

zg ¼ ug _ug
� �T, (1) becomes

_zg ¼
0 1

�x2
g �2ngxg

" #
zg þ

0
�1

� �
w ð2Þ

The total acceleration at the surface of the ground, ag , is
obtained as

ag ¼ €ug þw ¼ 0 1½ � _zg þw ¼ �x2
g �2ngxg

� �
zg ð3Þ
3.1.2. Structural dynamical sub-system
The equation of motion for a linear structure subjected to base

motion is

M€us þ C _us þ Kus ¼ �Miag þ f ð4Þ
where M, C, and K denote the mass, damping, and stiffness matri-
ces, respectively, i is the influence vector relating the degrees of
freedom to a unit base motion, and f models a random external
force vector representing the effect of ambient noise, adding uncer-
tainty to the system response. In first-order form, using zTs ¼ ½uT

s
_uT
s �,

(4) becomes

_zs ¼
0 I

�M�1K �M�1C

� �
zs þ

0
�i

� �
ag þ

0
M�1

� �
f ð5Þ
3.1.3. State-space representation
Combining (2), (3) and (5), we obtain a representation of the full

dynamical system in first-order form
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_z ¼

0 1 0 0
�x2

g �2ngxg 0 0
0 0 0 I

ix2
g i2ngxg �M�1K �M�1C

2
6664

3
7775zþ

0
�1
0
0

2
6664

3
7775wþ

0
0
0

M�1

2
6664

3
7775f

ð6Þ

where zT ¼ ½zTg zTs � . Consistent with previous studies [17], we
define the matrices Ac and Bc and vector bc so that (6) takes the
form _z ¼ Aczþ bcwþ Bcf. Discretizing in time domain in the
state-space framework with time step Dt requires the standard

transformations A ¼ eAcDt , b ¼ A�1
c ðA� IÞbc , and B ¼ A�1

c ðA� IÞBc

[18]. This leads to

zkþ1 ¼ Azk þ bwk þ Bfk ð7Þ

as the full equation of motion for the system in discrete time step k.
Fig. 2. Bedrock excitation w with time-varying variance r2
wðtÞ with gamma

modulating function proportional to the gamma PDF.
3.1.4. Modeling the excitation
To represent the non-stationarity of the ground motion, we

model the acceleration at the bedrock as a modulated, band-
limited white-noise process. Thus, wðtÞ is normally distributed
with zero mean and a time-varying variance r2

wðtÞ with a gamma
modulating function, so named because its shape is taken to be
proportional to a gamma probability density function (PDF). The
gamma PDF is a reasonable model for this purpose, since it is
non-negative, starts at and tends to zero, and the shape is skewed
with a longer right tail, which is typical of earthquake ground
motions. The parameters of the modulating function are deter-
mined in terms of descriptive variables of the seismic event. Specif-
ically, we take the mode of the distribution to coincide with the
time of the maximum intensity of the ground motion, tmax

eq , and
the middle 90% of the distribution to represent the effective dura-
tion of the earthquake motion, D5�95, which we define as the time
between 5% and 95% Arias intensity values. These modeling
assumptions lead to the shape and scale parameters of the modu-

lating function and the corresponding gamma PDF as k ¼ tmax
eq

h þ 1

and h ¼ � 1
2 t

max
eq þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðtmax

eq Þ2 þ D2
5�95

q
, respectively. The modulating

function is scaled by a factor to achieve the desired intensity of the
motion. We note that these parameters can be highly uncertain.
One approach is to use mean values of the parameters for given
earthquake and site characteristics, as described in [19]. Alterna-
tively, these values can be tuned post-event to match the parame-
ters of an observed excitation, where an estimation of the response
based on sensor information recorded through the duration of the
event is desired. Ideally, these parameters should be estimated
from observations of the structural response. However, that would
necessitate a costly simulation approach. Hence, as a first attempt
at solving this problem, for now we assume these parameters are
known. Later, we investigate the robustness of the proposed
method to uncertainties in the input ground motion parameters.
Fig. 2 shows an example simulation of wðtÞ with tmax

eq ¼ 20 s,
D5�95 ¼ 25 s, a scale factor of 200, and a discretization time step
of Dt ¼ 0:01 s, which implies a cut-off frequency of 50 Hz [20]. This
results in a root-mean-square of the ground acceleration, calcu-
lated over the duration of the response ½0;50 s�, of 0:64 m=s2 and
a maximum standard deviation of rwðtmax

eq Þ ¼ 3:64 m=s2:
3.1.5. System evolution
Given the state-space representation of the system, the system

evolution from time step k to kþ 1 is described by (7). We take fk
to be normally distributed with zero mean and covariance matrix
r2

f I, where I is the identity matrix. Further, we assume the force
values at different time steps are statistically independent of each
other and of the ground motion and initial conditions. Including
this additional force increases the uncertainty in our model.
3.1.6. Observation equation
We assume sensors mounted on the structure measure the total

accelerations,

at ¼ €us þ iag ð8Þ
From (4) and z as defined in (6), we obtain

at ¼ �M�1Kus �M�1C _us þM�1f ¼ �M�1½ 0 0 K C �zþM�1f

ð9Þ
Let S define a matrix that selects the degrees of freedom, where

accelerometers are placed. The observation equation at each time
step k is then given by

yk ¼ Dzk þ mk þ SM�1fk ð10Þ

where D ¼ �SM�1½ 0 0 K C � is the observation matrix and mk

denotes the vector of measurement errors. We take the measure-
ment errors mk to be normally distributed with zero mean and
time-independent common variances r2

m , and assume errors at dif-
ferent times and different locations are independent. The objective
is to use the sensor measurements yk to infer the response of the
structure as it evolves with time under seismic excitation.
3.2. DBN representation of the system

With a stochastic excitation, a dynamically evolving structural
response, and uncertainties in the system, including uncertainties
in sensor measurements, the system to be analyzed is well mod-
eled graphically as a DBN, as shown in Fig. 3.

The DBN consists of a sequence of BNs, each representing the
system at a slice in time. Subscript k, k ¼ 0;1; . . . ;n, refers to the
time step with k ¼ 0 indicating initial values, which are also uncer-
tain. The DBN shows the evolution of the system state z over time,
depending on the random processes w and f, which act as inputs
for the system dynamics. The measurements y are then taken from
z with measurement error m. Measurements are shaded to indicate
that their values are observed.



Fig. 3. Representation of the system as a DBN.
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3.3. Kalman filter and Kalman smoother

Since we are dealing with a linear Gaussian model, inference on
the DBN can be performed by the KF and KS algorithms [21–25]. In
this section, we follow the scheme reported in [5]. In addition, we
assume observability of the system, so that it is possible to infer
the internal behavior of the system based on its outputs [26].
Specifically, our objective is to estimate the state of the system z
given measurements y. From (7), we predict the mean vector and
covariance matrix of the system state at step k as

lP
Zk

¼ AlZk�1
ð11Þ

RP
ZkZk

¼ ARZk�1Zk�1A
T þ REk ð12Þ

where REk ¼ br2
wk
bT þ R2

e and the superscript P denotes the pre-
dicted value. We then calculate

ek ¼ yk � DlP
Zk

ð13Þ

Rk ¼ DRP
ZkZk

DT þ r2
mI ð14Þ

KGk
¼ RP

ZkZk
DTR�1

k ð15Þ
In the KF terminology, ek is the innovation, Rk characterizes the

uncertainty due to the measurement error, and KGk
is the Kalman

gain matrix [27]. The innovation measures the difference between
the measurements and the predicted mean values. The Kalman
gain takes into account the accuracy of the observations to provide
a weight on the information from the measurements compared to
the values from the prediction in updating the estimates. Thus, the
estimates of the mean vector and covariance matrix are updated as

lZk
¼ lP

Zk
þ KGk

ek ð16Þ

RZkZk ¼ ðI� KGk
DÞRP

ZkZk
ð17Þ

The KF performs a forward pass through the data to update the
estimates of the system state as information from measurements
becomes available. The mean and covariance matrix (16) and
(17) define the parameters of the posterior normal distribution of
state zk, given observations fy1; . . . ; ykg. Once we have information
over a fixed time interval, we can perform a backward pass
through the data to further update our estimates using the KS
[28], thus obtaining the parameters of the posterior distribution
given all the observations fy1; . . . ; yng. To apply the KS, we first
compute the smoother gain matrix

Jk ¼ RZkZkA
TðRP

Zkþ1Zkþ1
Þ�1 ð18Þ
and then update our estimates according to

lKS
Zk

¼ lZk
þ JkðlKS

Zkþ1
� lP

Zkþ1
Þ ð19Þ

RKS
ZkZk

¼ RZkZk þ Jk RKS
Zkþ1Zkþ1

� RP
Zkþ1Zkþ1

� �
JTk ð20Þ

It is these final estimates of the system state from applying the
KS that we use to probabilistically assess the response of the sys-
tem under the stochastic loads.

The displacement and velocity of any set of degrees of freedom
in the structure, or any linear combination of them, at any time
step, are modelled as a joint normal distribution, and the algo-
rithms described above allow for computing the corresponding
parameters. This description is sufficient for applying the extreme
value analysis, as described in the next section. It is noted that the
system state trajectories can be easily sampled from the DBN in
Fig. 3 by using the Forward Filtering Backward Sampling approach
described in [29]. We use samples generated by this method to val-
idate the formulas proposed in the next section.

4. Analytical solution for extreme values of inferred structural
response

In reliability analysis, it is often the distribution of extreme val-
ues that is critical. Therefore, in this section, we show how the out-
come of the probabilistic inference presented above can be used to
compute the distribution of the maximum structural response over
the duration of the seismic excitation. The objective is, for example,
to compute the probability that a critical response quantity will
exceed a safe threshold. For this purpose, we derive an approxi-
mate analytical solution for the probability of a non-zero-mean,
non-stationary process exceeding a specified threshold.

Specifically, we are interested in the probability of the non-
stationary process ZðtÞ exceeding a given threshold f during an
interval ð0; TÞ, where ZðtÞ is a linear function of the system state
zs defined previously, and T is the duration of the response. In what
follows, we assume ZðtÞ is a mean-square differentiable process.

Define Zmax ¼ maxt ZðtÞ and let mðfþ; tÞ denote the mean rate of
crossing of ZðtÞ above the threshold f at time t. Assuming these
crossings constitute Poisson events, the probability of interest is
given by [30].

PrðZmax > fÞ ¼ 1� PrðZmax 6 fÞ ffi 1� exp �
Z T

0
mðfþ; tÞdt

� �
ð21Þ

where the approximation is due to the assumption of Poisson cross-
ings and is valid for high thresholds. Due to conditioning on mea-
sured responses, ZðtÞ is not a zero-mean process. Indeed, the
mean of ZðtÞ varies with time. Thus, to obtain mðfþ; tÞ, we cannot



Fig. 4. Up-crossing of a non-stationary zero-mean process above a time-varying
threshold.

Fig. 5. 10-Story shear-type building model.
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use the well-known formula for up-crossings of a Gaussian process
with a constant mean [31]. Define XðtÞ ¼ ZðtÞ � lZðtÞ, where XðtÞ is
now a zero-mean process with rXðtÞ ¼ rZðtÞ. The up-crossings of
the non-zero-mean process ZðtÞ above a fixed threshold f are iden-
tical to the up-crossings of the zero-mean process XðtÞ above a
time-varying threshold gðtÞ ¼ f� lZðtÞ. Therefore, our goal of
assessing the probability that random variable ZðtÞ up-crosses a
threshold f is equivalent to assessing the probability that random
variable XðtÞ up-crosses a threshold gðtÞ. Consider the sketch shown
in Fig. 4. We are interested in deriving the mean up-crossing rate of
XðtÞ above the time-varying threshold gðtÞ.

We see in Fig. 4 that during the small time interval ðt; t þ Dt�,
the probability of encountering an up-crossing of level gðtÞ is

Pr fXðtÞ < gðtÞg \ f _gðtÞ < _XðtÞg \ fgðtÞ þ _gðtÞDt < XðtÞ þ _XðtÞDtg
h i

¼ Pr½fgðtÞ þ ð _gðtÞ � _XðtÞÞDt < XðtÞ < gðtÞg \ f _gðtÞ < _XðtÞg�
¼ R1

_g

R g
gþð _g� _xÞDt f X _Xðx; _x; tÞdxd _x

¼ Dt
R1
_g ð _x� _gÞf X _Xðg; _x; tÞd _x

ð22Þ

where f X _Xðx; _x; tÞ is the joint PDF of XðtÞ and _XðtÞ and use has been
made of the mean-value theorem for small Dt to arrive at the last
expression. Since in a small interval, the probability of more than
one up-crossing is negligible compared to that of zero or one cross-
ing, mðfþ; tÞ is equal to the above probability divided by Dt, i.e.,

mðfþ; tÞ ¼ mXðgðtÞþ; tÞ ¼
Z 1

_g
ð _x� _gÞf X _Xðg; _x; tÞd _x ð23Þ

In our case the distribution f X _Xðx; _x; tÞ is jointly normal so that

f X _Xðg; _x; tÞ ¼
1

2prXr _X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� exp � 1

2ð1� q2Þ
g2

r2
X

� 2q
g _x

rXr _X
þ _x2

r2
_X

 !" #
ð24Þ

wherein gðtÞ;rXðtÞ;r _XðtÞ and qðtÞ ¼ q _XðtÞXðtÞ are all functions of time.
Using (24) in (23), after some algebra, we have

mXðgðtÞþ; tÞ ¼
exp �1

2
g2

r2
X

� �
2prXr _X

ffiffiffiffiffiffiffiffi
1�q2

p r2
_X
ð1� q2Þ exp � r2

2r2
_X
ð1�q2Þ

� �	

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� q2Þp

r _X 1�U r
r _X

ffiffiffiffiffiffiffiffi
1�q2

p

 �� �

r _Xqg
rX

� _g
� ��

ð25Þ
where r ¼ _g� qgr _X

rX
and Uð�Þ indicates the standard normal CDF. The

values rXðtÞ;r _XðtÞ and qðtÞ ¼ q _XðtÞXðtÞ are outputs from the inference
procedure. At any time step, mX is computed using (25) and the inte-
gral in (21) is approximated by the sum along all steps.

While the KF and KS provide estimates of the evolution of the
structural response over time, the solution presented in this sec-
tion gives us the ability to analytically estimate the probability of
the structural response exceeding a given threshold over the dura-
tion of the excitation, a probability that cannot be estimated
directly from KF or KS. With the expressions given in (21) and
(25), this is done analyzing the result of the KS inference. In addi-
tion, the analytical solution provides us with results for small
exceedance probabilities for which sampling methods, e.g., Monte
Carlo simulations, would be infeasible.

5. Numerical application

We apply the proposed method to a 10-story, shear-type build-
ing, as shown in Fig. 5. The building is of nominally uniform mass
and stiffness with these parameter values set such that the nomi-
nal fundamental period is 1 s. We assume the building is classically
damped with nominal damping ratios being 0.05 in each mode.
The parameters of the ground filter are set at xg=2p ¼ 1:5 Hz
and ng ¼ 0:4. We take the stochastic excitation at the bedrock level
as described for the example realization in Fig. 2, with earthquake
parameters tmax

eq ¼ 20 s and D5�95 ¼ 25 s. The estimated mean peak

ground acceleration is roughly 1:6 m=s2, obtained by multiplying
the peak root mean square of the ground acceleration by a peak
factor of 2.5.

We use simulation to investigate the accuracy of the proposed
method. For this purpose, we first simulate a seismic event as well
as the ambient noise. We compute the structural response from
this generated combined excitation, and we call this the ‘‘actual”
response. We then simulate measurements of this response by
adding a randomly generated measurement noise. These represent
the observations of floor accelerations that we obtain from the
accelerometers mounted on the structure. Then, assuming we have
only these noisy measurements of floor accelerations and the sys-
tem and ground motion parameters, we use our formulation of the
system to estimate the response of the structure to the stochastic
seismic loading.

The proposed formulation enables us to perform probabilistic
inference on any selected response of the structure that can be
expressed as a linear function of zs. For the present example, we



Fig. 6. Time history of inter-story drift #5: actual response, KF, and KS estimates.

Fig. 7. Time history of inter-story drift #5: actual response, KF, and KS estimates (peak at t ¼ 19 s).

Fig. 8. MC realizations of inter-story drift #5 compared to actual response and KS estimate (peak at t ¼ 19 s).
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Fig. 9. Complementary CDF of maximum inter-story drift (‘‘id”) fromanalytical solution and MC simulations.

Fig. 10. Time history of inter-story drift #5: ‘‘actual” response versus mean KS estimates with varying c.o.v.’s of floor masses and story stiffnesses 0–20% and damping ratios
0–40%.
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Fig. 11. Time history of inter-story drift #5: ‘‘actual” response versus mean KS estimates with varying c.o.v.’s of floor masses and story stiffnesses 0–20% and damping ratios
0–40% (peaks in interval t ¼ ½19;24� s).

Fig. 12. RMSEs of mean KS-estimated inter-story drift #5 with varying c.o.v.’s of
floor masses and story stiffnesses 0–20% and damping ratios 0–40%.
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focus on the inter-story drift response, specifically that of the 5th
story between floors 4 and 5. Thus, the proposed inference process
enables us to estimate inter-story drift based on measured
accelerations.

5.1. Estimates of the response

Previously, we investigated the impact of varying sensor noise,
number, and placement on the estimation [32]. In that paper, we
find that sensor placement has a more significant effect on the
accuracy of the estimation than sensor precision. Sensors placed
at the top of a structure are more informative than sensors placed
at the bottom, and while increasing the precision of the sensors
improves the estimation, the effect is small. Thus, for this study,
we assume that one sensor is placed at the top floor of the building.
We also assume the standard deviation of measurement error is
rv ¼ 0:5 m=s2.

Given this sensor configuration, Fig. 6 shows the time history of
the inter-story drift #5. Plotted are the ‘‘actual” value, mean, and



Fig. 13. Time history of inter-story drift #5: actual response versus mean KS estimates with varying c.o.v.’s of ground parameters 0–20%.
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mean plus/minus two standard deviation values, representing the
95% confidence interval, of the KF and KS estimates. Because the
time histories are nearly coinciding, Fig. 7 zooms on one particular
peak that occurs at t ¼ 19 s. Any other segment of the time history
can similarly be chosen to analyze the results of the estimation.
Comparing the actual response with the KF and KS estimates, we
see that, consistent with the theory, employing the KS improves
the accuracy of the estimation. Utilizing the measurement infor-
mation over the entire time history results in a KS mean estimate
that is closer to the actual inter-story drift and a decreased vari-
ance in the estimate. Hereafter, only the KS results are reported.

5.2. Distribution of maximum response

In analyzing the distribution of the maximum response, we
compare the results we obtain from the analytical solution with
those obtained from Monte Carlo (MC) simulations. For MC, we
generate multiple realizations of the posterior process consistent
with the inference on the DBN. Each MC realization produces a
time history of the evolution of the structural response, including
the measurement noise. Sample trajectories are shown in Fig. 8
for 10 randomly selected realizations of inter-story drift #5, plus
the ‘‘actual” value and the KS estimate. The segment of the time
history around the peak at t ¼ 19 s is selected.

In Fig. 8, we see that the MC realizations largely lie within the
mean KS estimate of the response � two standard deviations. This
represents the 95% confidence interval. Having these MC samples,
we then take, for each realization, the maximum of the inter-story
drift over the time period of analysis to obtain distributions of the
maximum response.

The analytical solution derived in Section 4 gives us the proba-
bility that the maximum inter-story drift exceeded a given thresh-
old, i.e., the complementary CDF. For comparison, we also compute
these probabilities from the MC simulations. Fig. 9 shows the com-
plementary CDF’s of the inter-story drifts for all 10 stories obtained
from the analytical solution versus MC. The analytical results (indi-
cated by the solid lines) are obtained by using Eqs. (21) and (25).
The MC results (indicated by the dotted lines) are the empirical
CDF’s. The MC solution employed 500 simulations. The lines shown
are the mean estimates.



Fig. 14. Time history of inter-story drift #5: actual response versus mean KS estimates with varying c.o.v.’s of ground parameters 0–20% (peaks in interval t ¼ ½19;24� s).

Fig. 15. RMSEs of mean KS-estimated inter-story drift #5 with varying c.o.v.’s of
ground parameters 0–20%.
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Examining the analytical results in Fig. 9, we see a phenomenon
that cannot be true: For low thresholds, the complementary CDFs
are not monotonically decreasing. This is due to the approximation
employed in (21) for the distribution of the extreme value of a non-
stationary process, namely the assumption that the threshold
crossings constitute Poisson events. While this assumption is rea-
sonable at high thresholds where crossings are rare, at low thresh-
olds it is not good. One obvious reason is that the assumption does
not account for the fact that once a threshold is crossed, the pro-
cess cannot make additional crossings as long as it stays above that
threshold. This ‘‘transition” time can be quite long for low thresh-
olds. The comparison with MC results in Fig. 9 shows that the Pois-
son crossings assumption is valid for exceedance probabilities
smaller than about 0.1. Since high thresholds are where damage
occurs, this is indeed the range of interest for our analysis of the
structural response. The advantage of the analytical solution, of
course, is that it can provide solutions for much smaller excee-
dance probabilities for which the MC approach is infeasible.



Fig. 16. Time history of inter-story drift #5: actual response versus mean KS estimates with varying c.o.v.’s of input motion parameters 0–40%.
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5.3. Robustness to uncertainty in structural parameters

In the previous analyses, we assumed the parameters of the
structure, i.e., mass, stiffness, damping, are known. In reality, these
parameters are subject to uncertainty. In this section, we investi-
gate the robustness of the estimation results to this uncertainty.
We consider variability in all three parameters. More detailed
results considering variability in subsets of the parameters are
reported in [33].

In our analysis, we use nominal values of the structural param-
eters to obtain the KS estimates of the response. The nominal val-
ues represent our best estimates of the structural parameters
based on design drawings. For the ‘‘actual” structure, the floor
masses, story stiffnesses, and modal damping ratios are considered
as random variables and vary from the nominal values. We sample
the actual parameter values from lognormal distributions with
means equal to the nominal value and over a range of coefficients
of variation (c.o.v.’s), assuming statistical independence between
floor masses, between story stiffnesses, and between modal
damping ratios. It is these randomly sampled values that we use
in our simulation of the ‘‘actual” response and measured values.

Fig. 10 shows the effect of uncertainty in the structural param-
eters on the accuracy of the estimation of the inter-story drift #5
response over the full time history. The figure shows the ‘‘actual”
response for a sampled set of structural parameters compared to
the mean KS estimate as we increase the uncertainty in the param-
eters. The c.o.v. values for stiffness and mass range from 0% to 20%
and that for damping ratios ranges from 0 to 40%. Since the curves
in Fig. 10 are too close to be distinguished, Fig. 11 zooms on the
peaks that occur in the interval t 2 ½19;24� s. Any other segment
of the time history can similarly be chosen. For consistency and
clarity, hereafter, we examine the peaks in this time segment.

In Figs. 10 and 11, because each level of c.o.v. corresponds to a
random sample of the structural parameters that produces a differ-
ent trajectory for the ‘‘actual” response, we compare each ‘‘actual”
response with the corresponding mean KS estimate, as shown in
each subplot. In the bottom subplot of Fig. 11, we see that even
with all three structural parameters subject to the largest c.o.v.,



Fig. 17. Time history of inter-story drift #5: actual response versus mean KS estimates with varying c.o.v.’s of input motion parameters 0–40% (peaks in interval t ¼ ½19;24� s).
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the mean KS estimate of the inter-story drift closely corresponds
with the actual response.

To quantify the effect of uncertainty in the structural parame-
ters on our inference results, we examine the root mean square
errors (RMSEs) of the mean KS estimates of inter-story drift #5
compared to the actual responses as a function of the c.o.v.’s. The
MSE is computed over the duration of the response ½0;50 s� as
the average squared error between the estimated and actual
inter-story drift values, and the RMSE is its square root. Fig. 12
shows the RMSEs computed across the range of c.o.v.’s with a step
size of 0.01. The circles indicate the values at the five c.o.v. levels
presented in Figs. 10 and 11. Note that the non-monotonicity of
the RMSE is due to random variations, as the RMSE shown is the
result from one simulation at each value of c.o.v.

In Fig. 12, we see that, as expected, the RMSE increases with
increasing uncertainty in the structural parameters. The increase,
however, is gradual and relatively small in magnitude. Specifically,
the RMSE increases from 7.8 � 10�4 m to 8.5 � 10�4 m (a 10%
increase) with a maximum of 1.9 � 10�3 m over c.o.v. values rang-
ing from 0–20% for floor masses and story stiffnesses and 0–40% for
damping ratios. The maximum RMSE is an order of magnitude
smaller than the actual peak inter-story drift response in each case.

The reason the inference is robust relative to the uncertainty in
the structural parameters is due to the updating that is performed
with the formulation of the problem. The variability in the struc-
tural parameters affects the estimate of the system state. However,
at each time step, we have information from the sensor measure-
ments, and we use this information to update the estimation. This
updating occurs at every time step, in this case Dt ¼ 0:01 s. Thus,
the estimate is quickly corrected by the measurement information
before the estimate has time to evolve incorrectly based on the
incorrectly assumed nominal values of structural parameters in
the estimation equations.

In looking at inter-story drift, another possible explanation for
the robustness of the results to uncertainty in the structural
parameters is that there may be a cancellation of errors that occurs



Fig. 18. RMSEs of KS-estimated inter-story drift #5 with varying c.o.v.’s of input
motion parameters 0–40%.
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when subtracting displacements of adjacent floors to compute the
inter-story drift. To ensure that the accuracy of the estimation is
not due to this cancellation, we also investigated the results in esti-
mating individual floor displacements. The results of this analysis,
not shown here, showed similar robustness to parameter uncer-
tainties. Thus, the proposed method is able to estimate the state
of the considered structural system accurately, even when all three
structural parameters – mass, stiffness, and damping – are subject
to uncertainty.

5.4. Robustness to uncertainty in ground parameters

Next, we investigate the robustness of the inference results to
uncertainty in the ground parameters. The nominal values of the
ground parameters are set to xg=2p ¼ 1:5 Hz and ng ¼ 0:4. These
represent our best guess of the soil characteristics and are the val-
ues we use in our estimation of the system state. The ‘‘actual”
parameter values are randomly sampled from the lognormal distri-
bution with the mean equal to the nominal value and over a range
of c.o.v.’s from 0% to 20%. Fig. 13 shows the full time history of the
actual and estimated mean KS inter-story drift #5 response. Fig. 14
shows the results for the peaks that occur in the time segment
t 2 ½19;24� s.

In Figs. 13 and 14, we see that varying the ground parameters
produces varying structural response trajectories. However, in
each case, the mean KS estimate is close to the actual response.
Despite the variation in the ground parameters and response tra-
jectories, the estimation performs well. Fig. 15 shows the RMSEs
of the mean KS estimates of inter-story drift #5 computed over
the duration of the response as a function of the c.o.v. It is observed
that the accuracy of the estimation is insensitive to the degree of
uncertainty in the ground parameters, as the RMSE remains essen-
tially constant with a mean of 7.7 � 10�4 over the range of c.o.v.’s
from 0% to 20%. The maximum value of the RMSE is around 10% of
the maximum actual inter-story drift.

5.5. Robustness to uncertainty in input motion parameters

Finally, we investigate the robustness of the proposed method
to uncertainty in the input motion parameters. We vary the
descriptive variables of the seismic event, i.e., the time of the max-
imum intensity of the ground motion, tmax

eq , and the effective dura-
tion of the earthquake motion, D5�95. In addition, we vary the scale
factor of the gamma modulating function, i.e., to randomize the
intensity of the ground motion. We assume the nominal values
tmax
eq ¼ 20 s, D5�95 ¼ 25 s, and a scale factor of 200 in our estimation
of the system state. We then randomly sample realizations of these
parameters from lognormal distributions with means equal to the
nominal values and c.o.v.’s ranging from 0% to 40%. The sampled
values are then used to simulate the ‘‘actual” ground motion.
Fig. 16 shows the full time history of the ‘‘actual” and mean KS-
estimated inter-story drift #5 response. Fig. 17 shows the results
for the peaks that occur in the time segment t 2 ½19;24� s. We
see in these figures that, in each case, the mean KS estimate of
the response is close to the ‘‘actual” response, and the estimation
performs well across time histories. Fig. 18 shows the RMSEs of
the mean KS estimates of inter-story drift #5 computed over the
duration of the response as a function of c.o.v. It is observed that
the variability in the RMSE of the estimate increases slightly with
increasing c.o.v. of the input ground motion parameters. The value
of the RMSE, however, remains essentially constant over the range
of c.o.v.’s 0–40% with a mean of 7.9 � 10�4 m. The maximum RMSE
is more than an order of magnitude smaller than the actual peak
inter-story drift response.

In summary, while in general model errors can significantly
deteriorate the accuracy of the inference, we conjecture that low
sensitivity to errors in the model parameters holds for applications
similar to that investigated in this example.
6. Conclusions

We have presented a probabilistic framework for estimating the
state of a linear system subject to stochastic excitation based on
uncertain sensor measurements. We have shown the methodology
to be able to accurately perform inference on the dynamically
evolving response of a structure under earthquake load based on
accelerometer data. In addition, we have presented an analytical
solution to obtain the distribution of the peak response over the
duration of the excitation.

The proposed framework is applied to the estimation of the
maximum inter-story drift in a multi-story shear-type building.
By allowing the system parameters to vary randomly, we have
shown the methodology to be robust to uncertainties in the struc-
tural, ground, as well as input motion characteristics, demonstrat-
ing the ability of the proposed method to perform accurate
estimation of the response even under conditions of parameter
uncertainties.
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