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Abstract: Public infrastructure systems provide many of the services that are critical to the health, functioning, and 

security of society. Many of these infrastructures, however, lack continuous physical sensor monitoring to 

be able to detect failure events or damage that has occurred to these systems. We propose the use of social 

sensor big data to detect these events. We focus on two main infrastructure systems, transportation and 

energy, and use data from Twitter streams to detect damage to bridges, highways, gas lines, and power 

infrastructure. Through a three-step filtering approach and assignment to geographical cells, we are able to 

filter out noise in this data to produce relevant geolocated tweets identifying failure events. Applying the 

strategy to real-world data, we demonstrate the ability of our approach to utilize social sensor big data to 

detect damage and failure events in these critical public infrastructures. 

1 INTRODUCTION 

Public infrastructure systems provide many of the 

services that are critical to the continued health, 

functioning, and security of society. This includes 

energy systems that power nearly all devices, 

controls, and equipment, as well as transportation 

systems that enable the movement of people and 

goods across both short and long distances. Failure 

of or damage that has occurred to these 

infrastructures, whether from deterioration and 

aging, or from severe loads due to hazards such as 

natural disasters, poses significant risks to 

populations around the world. Detecting these 

damage or failure events is critical both to minimize 

the negative impacts of these events, e.g., by 

rerouting vehicles away from failed bridges, and to 

accelerate our ability to recover from these events, 

e.g., by locating the extent of power outages for 

deployment of repair crews. 

Many of these infrastructures, however, lack 

continuous physical sensor monitoring to be able to 

detect these damage or failure events. Bridges, for 

example, are generally subject to only yearly 

inspections, and very few are instrumented with 

physical sensors that would be able to detect damage 

that may occur at any time. In addition, 

infrastructures that contain monitoring capabilities, 

such as energy systems, may have extensive 

networks of physical sensors at a centralized level, 

but less so at the distribution level. Thus, while 

power plants are closely monitored, maps of outages 

rely on individual reports. 

In this paper, we propose the use of social 

sensors to detect damage and failure events of 

critical public infrastructure. Recently, there has 

been an exploration of the use of data from social 

sensors to detect events for which physical sensors 

are lacking. This includes the use of Twitter data 

streams to detect natural disasters (Sakaki et al., 

2010) or the use of texts to manage emergency 

response (Caragea et al., 2011). In this paper, we use 

the LITMUS framework – a framework designed to 

detect landslides using a multi-service composition 

approach (Musaev et al., 2014a, 2014b) – to detect 

public infrastructure failure events. We focus on two 

main systems: transportation (bridges and highways) 

and energy (gas lines and power). 

The rest of the paper is organized as follows. 

Section 2 provides an overview of the approach used 
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to detect infrastructure failure events using social 

sensor data. Section 3 provides the results of the 

approach as applied to four infrastructures: bridges, 

highways, gas lines, and power. In Section 4, we 

provide an evaluation of the proposed approach, 

including filtering results for the social sensor data 

and visualizations of the detected events. We 

summarize related work in Section 5 and conclude 

the paper in Section 6. 

2 APPROACH 

An overview of the approach is shown in Figure 1. 

The sensor data source is Twitter. For the results 

presented in this paper, these are tweets pulled over 

the period of one month. We use October 2015 as 

our evaluation period. It is noted that data from any 

other time period can be used within this framework. 

To detect infrastructure damage or failure events, 

all Twitter data is run through a series of filters to 

obtain a subset of relevant data. This filtering is 

done in three phases. First, we filter by search terms, 

which we have developed for various events of 

interest, e.g., “bridge collapse” to detect damage to 

bridge infrastructure. Second, as social sensor data is 

often noisy, with items containing the search terms 

but unrelated to the event of interest, data is filtered 

using stop words. Using a simple exclusion rule 

based on the presence of stop words, this filters out 

the irrelevant data. An example for detecting bridge 

collapses is the stop word “friendship” that refers to 

the collapse of a bridge or connection between two 

people. 

Third, data is filtered based on geolocation. 

Although most social networks enable users to 

geotag their locations, e.g., when they send a tweet, 

studies have shown that less than 0.42% of tweets 

use this functionality (Cheng et al., 2010). In 

addition, users may purposely input incorrect 

location information in their Twitter profiles (Hecht 

et al., 2011). As geolocating tweets is an important 

component in being able to identify specific 

infrastructure damage events, including their 

location, the data must be additionally filtered. In 

this study, the Stanford coreNLP toolkit (Manning et 

al., 2014) is used along with geocoding (Google, 

2016) to geolocate the tweet. This assigns each 

filtered tweet to a latitude and longitude and 

corresponding 2.5-minute by 2.5-minute cell as 

proposed in Musaev et al., 2014, based on a grid 

mapped to the surface of the Earth. 

Once all relevant tweets are mapped to their 

respective cells, all tweets in a single cell are 

assessed to identify the infrastructure damage and 

failure events. In this paper, we focus on the results 

for tweets relating to damage detection in four 

infrastructures: bridge, highway, gas line, and power 

infrastructure. 

 

 

Figure 1: Overview of data, filtering, and event detection 

approach. 

3 RESULTS 

Each of the four infrastructures studied present 

different challenges, with particular characteristics 

for filtering that we discuss in this section. In 

addition, we present the specific search terms and 

stop words that we have found for use in identifying 

events of interest for each infrastructure. All Twitter 

data is filtered using these words to obtain the subset 

of relevant data, which is then geolocated to identify 

the damage or failure events. 

3.1 Bridges 

Bridge-related damage events tend to be major 

events. This includes closures of bridges that are part 

of major transportation arteries, or high-visibility, 

large-impact bridge collapses. This results in tweets 

that are pointing to the same incident, but are 

mapped to different geographical cells. Users, for 

example, tweet about events that are far away. A 

differentiation, therefore, must be made between 

ground users and other users. While most relevant 

for bridges, this difference in location proves to be 

applicable across infrastructures. The search terms 

and stop words used to detect bridge-specific 

damage events are listed in Table 1. 

Table 1: Search terms and stop words for bridge damage 

events. 

Search Terms Stop Words 

bridge {collapse, damaged, 

closure, closed, flooded, 

accident} 

friendship, reopened, re-

opened, pending, fish, bid, 

awe, awesome, wheelchair 

Social Sensor 
Twitter 

Filtering 
Search terms 
Stop words 
Geolocation 

Event detection 
Bridges 

Highways 
Gas lines 

Power 

Assign to cell 
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3.2 Highways 

Analysis of highway-related events is dependent on 

the severity of the event considered. For example, it 

was found that many Twitter users use the platform 

to complain about delays and increased traffic times 

on the highway, rather than to indicate actual 

infrastructure damage. Considering only major 

traffic or accidents that occur on the highway 

decreases the amount of noise in the data. As many 

highway damage events are due to natural disasters, 

future filtering of the data in conjunction with 

information on natural disasters may also decrease 

noise and enable better detection of highway damage 

events. The search terms and stop words used to 

detect highway-related damage events are listed in 

Table 2. 

Table 2: Search terms and stop words for highway damage 

events. 

Search Terms Stop Words 

highway {damaged, closed, 

blocked, accident, mud, 

pothole, snow, gridlock} 

boating, watch, explore, 

delays, symbolic 

3.3 Gas Lines 

The social sensor data filtered to detect gas line 

damage events was the noisiest dataset of the 

infrastructures studied. While the bridge dataset 

includes differences in location between the tweet 

and event of interest, the gas line dataset also 

includes differences in time between the tweet and 

event of interest. For example, users tweet about gas 

leaks that have occurred in the past rather than about 

the current state of the infrastructure. In addition, 

irrelevant tweets include those complaining about 

the smell of gas from cars at drive-throughs, or 

about suspected but unsubstantiated gas leaks. Real 

gas leaks or damage to gas lines can result in severe 

health and safety consequences, so it is important to 

be able to detect these events. The search terms and 

stop words used to detect damage events related to 

gas lines are listed in Table 3. Note that due to the 

noise in this dataset and the number of stop words 

needed to filter out irrelevant data, a representative 

sample of, but not all, stop words are listed. 

Table 3: Search terms and stop words for gas line damage 

events. 

Search Terms Stop Words 

gas {leak, line} 

plumbers, suspected, in-home estimate, 

repairs underway, drive-through, drive-

thru, short line, tanker, contained, fixed 

3.4 Power 

In the data filtering process for power infrastructure, 

we are able to detect both larger-scale power outages 

that occur across cities and countries, e.g., the major 

outage in Puerto Rico on October 23, 2015, as well 

as smaller-scale individual outages, e.g., an outage 

associated with a local elementary school. For the 

stop words filter, we found that tweets containing 

any permutation of two or more of the hashtags 

#power, #outage, #blackout, or #grid were 

irrelevant. This is due to the general meanings of 

these words and the prevalence of these hashtags in 

referring to things outside the scope of events of 

interest. Over time, as different events occur and 

memes develop that utilize words associated with 

these critical public infrastructures but are unrelated 

to actual infrastructure damage, the data filtering 

system must be able to filter out this noise. In 

addition, tweets relating to news stories of past 

power outages, rather than the current state of power 

infrastructure, have to be filtered out. Future filtering 

in conjunction with text mining of news links in 

articles will facilitate this filtering. The search terms 

and stop words used to detect failure events of 

power infrastructure are listed in Table 4. 

Table 4: Search terms and stop words for power 

infrastructure damage events. 

Search Terms Stop Words 

power outage 

#power, #outage, #blackout, #grid, 

back on, claims, resolved, files, 

stories, hotel 

4 EVALUATION OF APPROACH 

In this section, we discuss the filtering efficiency of 

the proposed approach, and show how results can be 

visualized to facilitate detection, identification, and 

inference about critical public infrastructure damage 

and failure events. 

Table 5 shows the number of social media items 

downloaded and filtered through each step of the 

data filtering process. The total number of tweets 

remaining after each step for the four infrastructures 

is listed. In addition, for filter steps two and three, 

the percentage of data remaining after that filter step 

compared to the previous step is given. The relative 

number of tweets across the four infrastructures is an 

indicator of the relative prevalence of tweets related 

to those systems among Twitter users. 

The initial filter based on search terms includes 

items both relevant and irrelevant to the infrastructu-
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Table 5: Filtering results: number and percentage of tweets remaining after each filter step for four infrastructures of 

interest: bridges, highways, gas lines, and power. 

Infrastructure 

Filter based on search terms Filter based on stop words Filter based on geolocation 

Number of tweets Number of tweets % remaining Number of tweets % remaining 

Bridges 8436 8364 99.1% 1673 20.0% 

Highways 5826 5817 99.8% 2368 40.7% 

Gas lines 8709 8417 96.6% 2249 26.7% 

Power 6648 6474 97.4% 1127 17.4% 

 

re damage events of interest. The stop words filter 

out irrelevant tweets. From the first search-term 

filter to the second stop-word filter steps, we see that 

there are surprisingly low levels of noise in the 

social sensor data. The percentage of data remaining 

after the stop-word filter, however, is not 100%. 

This noise must be filtered out using stop words. 

This is important to ensure the minimization of the 

number of incorrect detections of infrastructure 

damage events. 

Detections of damage or failure of critical public 

infrastructure have significant societal and economic 

impacts. If, for example, crews are dispatched to 

repair certain infrastructure, emergency responders 

are distributed to particular locations, or 

infrastructures are closed for safety based on this 

information, it is important that there is a high 

confidence in the inference about the infrastructure 

damage states before acting. This has policy 

implications for the accuracy of inference based on 

social sensor data required to transition from the 

data and event detections to public or community 

actions. 

From Table 5, we see that in going from the 

second stop-word filter step to the third geolocation 

filter step, the number of results filtered out due to 

incorrect or insufficient geolocation information is 

significant. This is due to the presence of irrelevant 

tweets, as well as to the lack of geolocation 

information to confirm relevance of a tweet to an 

event of interest. This demonstrates the need to 

augment the social sensor data with other data 

sources, including physical sensor data, news 

sources, and alternate social sensor information. 

Doing so will reduce the loss of information and 

increase the resolution of the relevant information in 

the third filtering step. This integration across data 

sources will also facilitate automation in detection of 

infrastructure damage or failure events. 

4.1 Data Visualization 

In addition to the detection of an event, given the 

spatial distribution of public infrastructure, it is 

important to be able to visualize the damage or 

failure events. Figures 2-4 show visualizations of 

events of interest, including the geolocated relevant 

tweets and detected events. 

Figure 2 shows a cluster of relevant tweets and 

detected events in the Johannesburg, South Africa, 

area related to bridge damage. The number of 

relevant tweets in a concentrated geographical area, 

i.e., the number of tweets mapped to a cell, can be 

used as a measure of the intensity of an event. In 

Figure 2, we see the relevant tweets detecting the 

severe bridge collapse in Johannesburg on October 

14, 2015. The distribution of tweets to different cells 

is due to differences in identifications of 

geolocations. In this case, geolocations for tweets 

relevant to this event include Johannesburg, 

Sandton, and Grayston Bridge. This is because the 

bridge collapse event occurred in Johannesburg’s 

Sandton district near Grayston Drive. Therefore, 

tweets related to the same event can be mapped to 

different cells due to different geolocations. Despite 

the distribution across cells, the number of relevant 

tweets in nearby cells indicates a severe event. In 

this case, there were two deaths and 20 injured as a 

result of this failure event. 

 

 

Figure 2: Relevant tweets and detected bridge damage 

events; example for Johannesburg, South Africa. 

In Figure 3, we show an example of highway 

damage-related relevant tweets and detected events 

for California, USA. The figure shows the 

correspondence between filtered, geolocated 

relevant tweets and detected events. We are able to 

detect damage events in both densely populated 

urban areas, e.g., events in the San Francisco Bay 
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Area, as well as in more sparsely populated rural 

areas, e.g., events near Lone Mountain and Death 

Valley. In addition, these results include a highway 

damage event due to a flood and subsequent 

mudslide, showing the ability of the approach to 

detect damage events due to multiple hazards. 

 

 

Figure 3: Relevant tweets and detected highway damage 

events; example for California, USA. 

For gas line damage, there were no particular 

events of interest, so a map is not shown here. Maps 

can, in general, be generated for locations or events 

of interest. Power infrastructure damage events are 

shown in Figure 4, which illustrates the widespread 

nature of power failures. An example of relevant 

tweets and detected events in the United States and 

Caribbean are shown. In addition to the outage 

events detected across the United States, we see the 

major power outage detected in Puerto Rico from 

the October 23, 2015, event. 

 

 

Figure 4: Relevant tweets and detected power 

infrastructure damage events; example for the United 

States and Caribbean. 

In general, we are able to use the social sensor 

information to detect damage and failure events of 

public infrastructure globally. The results are not 

limited to any one country or region of the world, or 

to the type or size of a community. Of course, event 

detection relies on the presence of the social sensors, 

e.g., Twitter data streams, but as social media 

adoption increases around the world, the amount of 

relevant data available will only increase. 

5 RELATED WORK 

The approach for public infrastructure damage and 

failure event detection as described in this paper is 

based on the LITMUS framework for landslide 

detection built by Musaev et al., (2014a and 2014b). 

A process similar to the LITMUS filtering process 

was utilized to filter the noise out of infrastructure 

damage-related tweets. However, this work differs 

from the LITMUS work in that instead of detecting a 

single type of event, we are focusing on different 

infrastructures that can be damaged due to a variety 

of events. For example, instead of detecting a 

landslide, we are detecting damage to a highway that 

may have been caused by a landslide or other event. 

There have been several studies using social 

sensor data to detect disaster events. This includes 

studies related both to man-made hazards, e.g., mass 

shootings (Vieweg et al., 2008; Palen et al., 2009); 

and to natural hazards, e.g., earthquakes (Guy et al., 

2010; Sakaki et al., 2010; Caragea et al., 2011), fires 

(Sutton et al., 2008), floods (Vieweg et al., 2010), 

and tornadoes (Imran et al., 2013). Our work differs 

from the disaster detection literature in that rather 

than detection of widespread disaster events, we 

detect damage to specific infrastructures, which may 

or may not be related to or a result of a larger 

disaster. In addition, many studies on detecting 

disasters using social media data focus on the 

detection or description of single hazards, whereas 

the infrastructure damage events that we are looking 

at may be caused by multiple hazards. 

6 CONCLUSION 

Detection of damage and failure events to public 

infrastructure is critical to the ability of communities 

around the world to minimize the risks associated 

with both natural and man-made disasters and to 

recover more quickly and efficiently from the 

negative effects of these hazards. As many of our 

public infrastructure systems are not physically 

monitored to the degree necessary to provide 

relevant, detailed information about the states of 

these systems in real time, social sensor data is used 

to perform this assessment and detect damage 

events. 

In this paper, we describe an approach to use 

social sensor big data to identify public 
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infrastructure damage events. This includes a three-

step filtering approach, whereby data is first filtered 

using search terms relevant to the event of interest. 

Next, noise in the data is filtered out using an 

exclusion rule based on the presence of stop words. 

Finally, data is filtered based on geolocation, 

resulting in each relevant filtered data item being 

assigned to a 2.5-minute by 2.5-minute cell in a grid 

mapped to the surface of the Earth. 

Once all relevant data are mapped to their 

respective cells, all data in a single cell are assessed 

to identify the infrastructure damage and failure 

events. In this paper, we present results for detection 

of damage events for transportation and energy 

systems, and in particular for bridges, highways, gas 

lines, and power infrastructure. We evaluate the 

approach using real-world data collected from 

October 2015. We show the ability of our approach 

to use social sensor information, in this case Twitter 

data streams, to detect damage events. In addition, 

we show how results can be visualized to facilitate 

detection, identification, and inference about 

infrastructure damage. 

As infrastructures are subjected to an increasing 

number of hazards, the ability to detect and localize 

damage events to these infrastructures is becoming 

an increasingly important task to improve the 

resilience of communities. In this paper, we 

demonstrate the ability of and value in using social 

sensor big data to detect damage and failure events 

in these critical public infrastructures. 
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