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ABSTRACT: In this paper, a framework based the dynamic Bayesian network (DBN) is proposed to 
dynamically monitor the response of structures to hazards. The methodology enables the probabilistic 
analysis of the response of a system to a hazard that is stochastic, e.g., an earthquake ground motion, as 
it dynamically evolves in time, based on sensor measurements that are uncertain. The developed DBN 
framework is applied to the estimation of the inter-story drift of a multi-story shear-type building under 
earthquake hazard based on accelerometer measurements. Using a simulation approach, the ability of 
the method to accurately assess the system response is shown. In addition, robustness of the method to 
system uncertainties, including uncertainties in the structural characteristics, is demonstrated. 

 
1. INTRODUCTION 
The analysis of the risk and resilience of a 
system subject to hazards requires probabilistic 
modeling of the system as well as assessment of 
the system through the evolution of the hazard. 
As the use of sensors becomes increasingly 
widespread in the monitoring of these systems, 
the challenge is to use the information from these 
sensors to perform this system risk assessment. 

A methodology based on a dynamic 
Bayesian network (DBN) framework is 
proposed. Specifically, we are interested in 
monitoring the response of structures to hazards 
that cause dynamic effects, such as earthquake 
ground motions. The objective is to accurately 
assess the structural response as it evolves 
through time under an excitation that is 
stochastic and based on sensor measurements 
that are uncertain. The DBN enables 
probabilistic analysis of the dynamically 

evolving structural system. This is beneficial for 
performing system risk assessment in real-time, 
and in the time after the hazard has occurred. In 
providing real-time estimates of the response, the 
proposed framework informs decision making in 
the management of structures subject to seismic 
hazard, for example, to trigger emergency shut-
down procedures for a structure once a response 
variable such as inter-story drift exceeds a given 
safe threshold. In post-hazard system assessment, 
the framework processes information collected 
from sensors to estimate not only the state of the 
structure at the end of the hazard event, but to 
map the trajectory of the evolution of the system 
state, informing, for example, varying safety 
procedures. Finally, as the proposed analysis 
depends on assumed values of the system 
parameters that are subject to uncertainty, 
including the structural characteristics, we show 
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the proposed inference method to be robust 
relative to uncertainties in these parameters. 

2. BACKGROUND AND RELATED WORK 
Several studies have used Bayesian methods in 
structural health monitoring (SHM) to perform 
damage detection in a structure, including Yang 
et al. (2006), Vanik et al. (2000), and Sohn and 
Law (1997). In addition, Bayesian techniques 
have been used in SHM to identify the modal 
parameters of a structure. For example, a 
Bayesian framework is proposed in Yuen and 
Katafygiotis (2002) to explicitly treat 
uncertainties in sensor measurements and 
modeling assumptions to obtain distributions of 
the modal parameters, including the most 
probable values of the parameters and their 
uncertainties. Both Katafygiotis and Yuen (2001) 
and Au et al. (2013) use data from ambient 
vibrations for modal identification to obtain 
updated distributions of the modal parameters. 
The system identification and damage detection 
problems described previously that are addressed 
in these studies are long-term monitoring 
problems, however. Our interest is in performing 
inference on the state of the structural system as 
it is subjected to a specific stochastic hazard. 

As the DBN performs probabilistic analysis 
of a dynamic system, it is ideal for SHM 
applications, where there is uncertainty in the 
sensor measurements and the structure is 
dynamically evolving in time. The DBN 
methodology proposed below performs inference 
on the dynamically evolving response of a 
structure when it is subjected to a stochastic 
excitation, e.g., an earthquake, based on the 
uncertain information collected from sensor 
measurements. By monitoring the structural 
response as it evolves, we are able to assess the 
risk of the system due to the hazard, obtaining, 
e.g., the expected inter-story drift response, and 
the probability of exceeding a maximum 
allowable response. It is noted that the present 
analysis assumes linear structural behavior as 
well as Gaussianity of both the earthquake and 
ambient vibration input excitations to allow the 
use of Gaussian models and Kalman filter (KF). 

As such, it is appropriate for serviceability 
earthquakes and operating-basis seismic events. 

3. PROPOSED METHODOLOGY 

3.1. System Formulation 
We model the dynamical system as a cascaded 
system of two sub-systems: a ground and a 
structural dynamical sub-system as shown in 
Figure 1. 

 

 
 
Figure 1: Dynamical system model, consisting of 
ground and structural sub-systems. 

The ground dynamical sub-system takes a 
modulated white-noise input 𝑤(𝑡), representing 
the motion at the bedrock, and outputs the 
acceleration 𝑎!(𝑡)  on the ground surface. The 
structural dynamical sub-system takes 𝑎!(𝑡) as 
excitation and produces the structural response 
𝐮!(𝑡), the vector of nodal displacements relative 
to the ground. Our interest lies not only in 
inferring the instantaneous values of 𝐮!(𝑡), but 
also in its peak values over time. 

The equation describing the motion on the 
ground surface relative to the bedrock is given 
by 

 𝑢! + 2𝜉!𝜔!𝑢! + 𝜔!!𝑢! = −𝑤 (1) 

where 𝜔!  and 𝜉!  define the angular frequency 
and damping ratio of the ground filter and 𝑤 
denotes the modulated white-noise acceleration 
at the bedrock. Written in first-order form with 
𝐳! = 𝑢! 𝑢! !, Equation (1) becomes 

 𝐳! =
0 1

−𝜔!! −2𝜉!𝜔!
𝐳! +

0
−1 𝑤 (2) 

The total acceleration at the surface of the 
ground, 𝑎!, is obtained as  

 𝑎! = 𝑢! + 𝑤 = −𝜔!! −2𝜉!𝜔! 𝐳! (3) 

The equations of motion for a linear structure 
subjected to base motion is 

 𝐌𝐮! + 𝐂𝐮! + 𝐊𝐮! = −𝐌𝐢𝑎! + f (4) 

Ground  
dynamical sub-system 

Structural  
dynamical sub-system 

w ag us
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where 𝐌,𝐂,  and  K  denote the mass, damping, 
and stiffness matrices, respectively. 𝐢  is the 
influence vector, where each element of 𝐢 equals 
the displacement in the corresponding degree of 
freedom from the application of a unit ground 
displacement. f models a random external force 
vector that represents ambient vibrations, i.e., 
random external loads acting on the structure in 
addition to the earthquake base input, adding 
uncertainty to the system. In first-order form, 
using 𝐳!! = [𝐮!! 𝐮!!  ], Equation (4) becomes 

𝐳! = 
𝟎 𝐈

−𝐌!!𝐊 −𝐌!!𝐂 𝐳! +
𝟎
−𝐢 𝑎! +

𝟎
𝐌!! f  (5) 

Combining Equations (2), (3), and (5), we obtain 
a representation of the full dynamical system in 
first-order form. Defining the system state vector 
as 𝐳! = [𝐳!! 𝐳!!], we have 

𝐳 =

0 1
−𝜔!! −2𝜉!𝜔!

𝟎                         𝟎
𝟎                         𝟎

𝟎 𝟎
𝐢𝜔!! 𝐢2𝜉!𝜔!

𝟎 𝐈
−𝐌!!𝐊 −𝐌!!𝐂

𝐳+

                
0
−1
𝟎
𝟎

𝑤 +
𝟎
𝟎
𝟎
𝐌!!

f  (6) 

Consistent with previous studies (e.g., Gasparini 
et al. 1983), we define the matrix 𝐀! and vector 
𝐛! in a state-space representation of the system 
in continuous time such that 𝐳 = 𝐀!𝐳+ 𝐛!𝑤 +
𝐁!f. Discretizing in time domain in the state-
space framework requires the standard 
transformations 𝐀! = 𝑒𝐀!∆! , 𝐛! = 𝐀!!𝟏(𝐀! −
𝐈)𝐛! , and 𝐁! = 𝐀!!𝟏(𝐀! − 𝑰)𝐁!  (Johansson et 
al. 1999). This leads to 

 𝐳!!! = 𝐀!𝐳! + 𝐛!𝑤! + 𝐁!𝐟! (7) 
as the full equation of motion for the system in 
discrete time step 𝑘. For the sake of simplicity, 
hereafter we drop the subscripts 𝑑 and write the 
discretized equation as 𝐳!!! = 𝐀𝐳! + 𝐛𝑤! +
𝐁𝐟!. 

3.2. Modeling the Excitation 
To represent the non-stationarity of the ground 
motion, we model the acceleration at the bedrock 
as a modulated, band-limited white-noise 
process. Thus, 𝑤(𝑡) is normally distributed with 
zero mean and a time-varying variance 𝜎!!(𝑡). 
Following Rezaeian and Der Kiureghian (2010), 
𝜎!!(𝑡)  is taken as proportional to a gamma 
probability density function (PDF), with 𝑡 = 0 
indicating the beginning of the seismic event. 
The gamma PDF is a reasonable model for this 
purpose, since it starts at and tends to zero, is 
zero for negative values, and the shape is skewed 
with a longer right tail, which is typical of 
earthquake motions. 

The parameters of the gamma PDF are 
determined in terms of descriptive variables of 
the seismic event. Specifically, we take the mode 
of the distribution to coincide with the time of 
the maximum intensity of the ground motion, 
𝑡!"!"#, and the middle 90% of the distribution to 
represent the effective duration of the earthquake 
motion, 𝐷!!!" , which we define as the time 
between 5% and 95% Arias intensity values. 
After derivation, these modeling assumptions 
lead to the shape and scale parameters of the 
gamma distribution as 𝑘 = !!"!"#

!
+ 1  and 

𝜃 = − !
!
𝑡!"!"# +

!
!

4𝑡!"!"#
! + 𝐷!!!"! , 

respectively. The modulating function is scaled 
by a factor to achieve the desired intensity of the 
motion. Figure 2 shows an example simulation 
of the ground acceleration 𝑎!(𝑡). 

 
Figure 2: Ground acceleration 𝑎! with time-varying 
variance 𝜎!!(𝑡) proportional to the gamma PDF. 
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This example excitation is a realization of a 
modulated white-noise process with earthquake 
parameters set at 𝑡!"!"# = 20  seconds  (s)  and 
𝐷!!!" = 25  s, and multiplied by a scale factor of 
40. This results in a root mean square of the 
ground acceleration, calculated over the duration 
of the response 0, 50  s , of 0.64  𝑚/𝑠!. For this 
example, the discretization time step is set as 
Δ𝑡 = 0.01  s. This effectively cuts frequencies off 
at 50 Hz. 

3.3. System Evolution and Observation Equation 
Given the state-space representation of the 
system, the system evolution from time step 𝑘 to 
𝑘 + 1 is described as in Equation (7). We take 𝐟! 
to be normally distributed with zero mean and 
covariance matrix 𝜎!!𝐈 , with statistically 
independent values for different time steps, and 
values independent of the ground motion and 
initial condition. Including this additional force 
increases the uncertainty in our model. 

We assume the sensors mounted on the 
structure measure total acceleration, which is 
given by 

 𝐚! = 𝐮! + 𝐢𝑎! (8) 

From Equation (4) and 𝐳 as defined in Equation 
(6), we obtain 

𝐚! = −𝐌!!𝐊𝐮! −𝐌!!𝐂𝐮! +𝐌!!𝐟 

                                  = −𝐌!! 𝟎 𝟎 𝐊 𝐂 𝐳+𝐌!!𝐟 (9) 

Let 𝐒 define a matrix that selects the degrees of 
freedom, where accelerometers are placed. The 
observation equation at each time step 𝑘 is then 
given by 

 𝐲! = 𝐃𝐳! + 𝛎! + 𝐒𝐌!!𝐟! (10) 

where 𝐃 = −𝐒𝐌!! 𝟎 𝟎 𝐊 𝐂  is the 
observation matrix and 𝛎! denotes the vector of 
measurement errors. We take the measurement 
errors 𝛎!  to be normally distributed with zero 
mean and time-independent common variances 
𝜎!! , and assume errors at different times and 
different locations are independent. The 
objective is to use these sensor measurements to 

infer the response of the structure as it evolves 
with time under seismic excitation. 

3.4. Dynamic Bayesian network 
With a stochastic excitation, a dynamically 
evolving structural response, and uncertainties in 
the system, including uncertainties in sensor 
measurements, the system to be analyzed is well 
modeled as a DBN. Figure 3 shows the 
representation of the system as a DBN. 
 

 
 
Figure 3: Representation of the system as a DBN. 
 

The DBN consists of a sequence of BNs, 
each representing the system at a slice in time, 
1,… ,𝑛 . Terms with zero subscripts represent 
initial values at time zero, which are also 
uncertain. The DBN shows the evolution of the 
system state 𝐳 over time, taking 𝑤 and 𝐟 as input. 
The measurements 𝐲 are then taken from 𝐳 with 
measurement error 𝛎. The observed variables 𝑦! 
are indicated by the shaded nodes. 

As stated previously, we assume a linear 
Gaussian system to allow the use of the Kalman 
filter (KF) to solve the DBN. That is, each of the 
random variables is assumed to be conditionally 
Gaussian given its parent(s) with the mean 
defined by a linear function of the parent(s). For 
concision, the details of the KF and Kalman 
smoother (KS) are not discussed here. The reader 
is referred to sources including Welch and 
Bishop (1995) and Murphy (2002) for more 
information. Using the KF to process the 
information in the DBN, we obtain estimates of 
the system state. It is these estimates that we use 
to probabilistically assess the response of the 
system under seismic load. 
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4. RESULTS 

4.1. Example System 
We apply the proposed method to a 10-story, 
shear-type building as shown in Figure 4. 

 
 
Figure 4: 10-story shear-type building model. 
 

The building is of nominally uniform mass 
and stiffness with these parameter values set 
such that the nominal fundamental period is 1  s. 
We assume the building is modally damped with 
nominal damping ratios being 5% in each mode. 
The parameters of the ground filter are set at 
𝜔!/2𝜋 = 1.5  Hz  and 𝜉! = 0.4 . We take the 
stochastic excitation at the bedrock level as 
described for the example realization in Figure 2, 
with earthquake parameters 𝑡!"!"# = 20  s  and 
𝐷!!!" = 25  s. The estimated mean peak ground 
acceleration is 1.6  m/s! , obtained by 
multiplying the root mean square of the ground 
acceleration by a peak factor of 2.5. 

We use simulation to investigate the 
accuracy of the proposed method. We first 
simulate a seismic event as well as the ambient 
noise. We compute the structural response from 
this generated combined excitation, and we call 
this the “actual” response. We then simulate 
measurements of this response, including 

measurement noise. These represent the 
observations of floor accelerations that we obtain 
from the accelerometers mounted on the 
structure. Then, assuming we have only these 
noisy measurements of floor accelerations and 
the system and ground motion parameters, we 
use our dynamic Bayesian network (DBN) 
formulation of the system to estimate the 
response of the structure to the stochastic seismic 
loading. 

The proposed formulation enables us to 
perform probabilistic inference on the relative 
displacements of the structure from our estimate 
of the system state 𝐳! . In this study, we are 
interested in the inter-story drift response in 
particular. While we are able to analyze the inter-
story drift throughout the building, for 
consistency in the results presented in the 
following sections when looking at time 
trajectories of the response, we will be 
examining one inter-story drift in particular, 
inter-story drift #5 between floors 4 and 5. 

4.2. Inference 
With one sensor placed on the top floor of the 
building, Figure 5 shows the time history of the 
inter-story drift #5, including the “actual” value 
and the Kalman filter (KF) and Kalman smoother 
(KS) estimates. The standard deviation of 
measurement error is set at 𝜎! = 0.5  m/s!. 

 
Figure 5: Time history of inter-story drift #5: actual 
response, KF, and KS estimates. 
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occurs at 𝑡 = 19  s Any other segment of the time 
history can similarly be chosen to analyze the 
results of the estimation. 
 

 
Figure 6: Time history of inter-story drift #5: actual 
response, KF, and KS estimates (peak at 𝑡 = 19  s). 
 

In Figure 6, for the KF and KS estimates, 
the bold lines indicate the mean estimates while 
the thinner lines indicate the mean estimates 
+/−  one standard deviation. Comparing the 
actual response with the estimates, we see that, 
consistent with the theory, employing the KS 
improves the accuracy of the response estimate 
compared to using only the KF. Utilizing the 
additional information of the measurements over 
the entire time history results in a KS mean 
estimate that is closer to the actual inter-story 
drift values and a decreased variance in the 
estimate. It is noted that the computation time for 
inference for each time slice of the DBN is on 
the order of 10!!  s , with an average of 
7.6×10!!  s. Compared to a time step of 10!!  s, 
the speed of the DBN inference enables real-time 
assessment of the system state as it is evolving 
under earthquake load. 

4.3. Robustness to Uncertainty 
In the previous analyses, we assumed that 
parameters of the structure were known. In 
reality, these parameters are subject to 
uncertainty. In this section, we investigate the 
robustness of the estimation results to this 
uncertainty in the structural parameters. 

Figure 7 shows the effect of uncertainty in 
the story stiffnesses of the structure on the 
accuracy of the estimation of the inter-story drift 
#5 response over the full time history. In this 
analysis, we use the nominal values of the story 
stiffnesses to obtain the KS estimate of the 
response. The nominal values represent our best 
guess of the structural parameters, e.g., based on 
design drawings. For the “actual” structure, the 
story stiffnesses are considered as random 
variables and vary from the nominal values. We 
sample the actual stiffness of each story 
randomly from the lognormal distribution with 
the mean equal to the nominal value and over a 
range of coefficients of variation (c.o.v.’s), 
assuming statistical independence from story to 
story. It is these randomly sampled values that 
we use in our simulation of the actual response 
and measured values. 

Figure 7 shows the actual response and the 
KS estimate for increasing values of the c.o.v. of 
story stiffnesses k. Because the time histories are 
close, Figure 8 shows the results for the peaks 
that occur between 𝑡 ∈ 19, 24   s . Any other 
segment of the time history can similarly be 
chosen to analyze the results of the estimation. 

 
Figure 7: Time history of inter-story drift #5: actual 
response versus KS estimates with varying c.o.v.’s of 
story stiffnesses 0-20%. 
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Figure 8: Time history of inter-story drift #5: actual 
response versus KS estimates with varying c.o.v.’s of 
story stiffnesses 0-20% (peaks in interval 𝑡 =
19, 24   s). 

 
In Figures 7 and 8, the c.o.v.’s of the actual 

stiffnesses range from 0-20%. Because each 
level of c.o.v. produces a different trajectory for 
the actual response, we compare each estimate 
with the corresponding actual response for that 
c.o.v. value, as shown in each subplot. We see 
that, as expected, as the c.o.v. increases, the KS 
estimates diverge from the actual responses. The 
effect is slight, however. Even as c.o.v. increases 
up to 20%, we see close correspondence between 
the actual and estimated inter-story drift 
responses. 

Figure 9 shows the root mean square errors 
(RMSE’s) of the mean KS estimates of inter-
story drift #5 compared to the actual responses as 
a function of the c.o.v.’s of story stiffnesses. The 
MSE is computed over the duration of the 

response 0, 50  s  as the average squared error 
between the estimated and actual inter-story drift 
values, and the RMSE is its square root. For 
Figure 9, the RMSE’s were computed across the 
range of c.o.v.’s with a step size of 0.01. The 
circles indicate the values at the 5 c.o.v. levels 
presented previously, i.e., for c.o.v. = 0%, 5%, 
10%, 15%, and 20%. 

 

 
Figure 9: RMSE’s of KS-estimated inter-story drift 
#5 with varying c.o.v.’s of story stiffnesses 0-20%. 
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is quickly corrected by the measurement 
information before the estimate has time to 
evolve incorrectly based on the incorrectly 
assumed nominal values, making the method 
robust to uncertainty in the structural parameters 
of the system. 

5. CONCLUSION 
We have developed a methodology based on the 
DBN framework to analyze the response of a 
structure to seismic loading based on uncertain 
sensor information. We have shown the method 
to accurately estimate the structural response, 
e.g., inter-story drift, based on acceleration 
measurements as the building is subjected to a 
seismic hazard. The ability of the framework to 
assess the system state in real time informs 
decision making in the management of structures 
subject to seismic hazard. In addition, we have 
shown the robustness of the method to 
uncertainties in the structural parameters of the 
system. Future work will be to relax the 
assumption of a linear Gaussian system to 
analyze nonlinear structural behavior. This will 
extend the use of the DBN framework beyond 
serviceability earthquakes and operating-basis 
seismic events to perform inference on structural 
behavior under more extreme hazard events. 
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