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ABSTRACT: The Bayesian network (BN) is an ideal tool for modeling and assessing the reliability of 
civil infrastructure, particularly when the information about the system and its components is uncertain 
and evolves in time. One of the major limitations of the BN framework, however, is the size and 
complexity of the system that can be tractably modeled as a BN. This is due to the size of the 
conditional probability table (CPT) associated with the system node in the BN model, which grows 
exponentially with the number of components in the system. In this paper, we present novel 
compression and inference algorithms that utilize compression techniques to achieve significant 
savings in memory storage of the system CPT. In addition, heuristics developed to improve the 
computational efficiency of the algorithms are presented. An application to an example system 
demonstrates the gains in both memory and computation time requirements achieved by the proposed 
algorithms. 

 
1. INTRODUCTION 
Infrastructure systems are essential for a 
functioning society. Our nation’s infrastructure is 
aging and becoming increasingly unreliable with 
potentially severe consequences. The Bayesian 
network (BN) is an ideal tool for modeling and 
assessing the reliability of civil infrastructure, 
particularly when information about the system 
and its components is uncertain and evolves in 
time. The major obstacle to the widespread use 
of BNs for system reliability analysis, however, 
is the limited size and complexity of the system 
that can be tractably modeled as a BN. This is 
due to the exponentially increasing number of 
elements that must be stored in the conditional 
probability table (CPT) for the system node in 
the BN as the number of components in the 
system increases. 

In this paper, novel compression and 
inference algorithms developed to address this 
limitation are proposed. The algorithms are 

applied to the analysis of an example system, and 
the performance along both memory storage and 
computational efficiency metrics is evaluated 
compared to existing methods. The gains 
achieved by the developed algorithms enable 
larger systems to be modeled as BNs for system 
reliability analysis. 

2. BACKGROUND AND RELATED WORK 
Previous work using BNs for system reliability 
assessment have been limited to the study of 
small systems, e.g., systems comprised of 5, 8, 
and 10 components in Kim (2011), Mahadevan 
(2001), and Bobbio et al. (2001), respectively. 
Boudali and Dugan (2005) use BNs to model the 
reliability of slightly larger systems, including a 
system of 16 components. However, the authors 
state that this “large number” of components 
makes it “practically impossible” to solve the 
network without resorting to simplifying 
assumptions or approximations. It is clear that 
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even a network of 16 components is not enough 
to create a full model of many real-world 
systems. 

This limitation in system size is due to the 
conditional probability tables (CPTs) that must 
be associated with each node in the BN. The 
CPT defines the conditional probability mass 
function of the node, given each mutually 
exclusive combination of the states of its parent 
nodes. Consequently, the size of the CPT grows 
exponentially with the number of parents of the 
node. For example, if every node has m states, 
then the CPT has 𝑚!!! entries, where 𝑛 denotes 
the number of parents. For an infrastructure 
system comprised of 𝑛  interconnected 
components 𝐶!,… ,𝐶!, the state of each of the 
constituent components impacts the state of the 
overall system. Therefore, the BN is as shown in 
Figure 1. 
 

 
 
Figure 1: BN of system comprised of n components. 
 

The individual component nodes are parents 
to the system node, denoted sys in the BN. Let us 
consider a binary system, where the components 
and the system are each in one of two possible 
states, e.g., survival or failure. For a system of 
100 components, therefore, the CPT for the 
system node consists of 2!"! = 2.5×10!" 
individual terms. This poses a significant 
memory storage challenge for constructing and 
analyzing the BN. 

One approach to address this limitation is to 
utilize Reduced Ordered Binary Decision 
Diagrams (ROBDDs), as in Nielsen et al. (2000), 
to efficiently perform inference in BNs 
representing large systems with binary nodes. 
However, a troubleshooting model is considered, 

which includes a major assumption of single-
fault failures. It is this assumption that bounds 
the size of the ROBDD and enables modeling of 
larger systems. For more general systems, this 
single-fault assumption cannot be guaranteed, 
and the gains from using the ROBDD may not be 
applicable. 

Another recent approach by Bensi et al. 
(2013) has been to optimize the topology of the 
BN to address the inefficiency of a converging 
BN structure as shown in Figure 1. This method 
seeks to create a chain-like BN model of the 
system with minimal clique sizes. The proposed 
optimization program, however, must consider 
the permutation of all component indices and, 
therefore, may itself become intractably large for 
large systems. 

In this paper, we propose novel compression 
and inference algorithms to address the 
limitation in system size in BN modeling of 
infrastructure systems. Note that while the 
algorithm presented is for binary systems, it can 
be extended to multi-state flow systems, e.g., 
where the component states are discretized 
values of flow capacity, e.g., 0%, 50%, and 
100% of maximum capacity. In addition, while 
the proposed algorithms are able to 
accommodate the case of dependent components, 
as indicated by the dotted arrows to parent nodes 
above the component nodes, this paper focuses 
on the system description part of the BN 
enclosed in the dashed box, which models the 
system performance. 

3. PROPOSED ALGORITHMS 

3.1. Compression Algorithm 
For the BN representation of a system as shown 
in Figure 1, the component states 
deterministically define the system state. That is, 
for any combination of the component states, we 
know with certainty whether the system is in 
either a survival or a failure state. This model is 
particularly useful for studying the reliability of 
infrastructure systems, such as gas, power, or 
transportation systems, where the states of 
individual gas pipelines, electrical transmission 
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lines, or roadways directly determine the state of 
the infrastructure system. When the component 
states deterministically define the system state, 
the CPT associated with the system node has a 
special property. For a binary system, let us 
define failure as 0 and survival as 1. Since for 
each distinct combination of component states 
the system state is known with certainty, the 
system CPT is comprised solely of 0s and 1s. 
The proposed compression algorithm takes 
advantage of this property. An example of the 
system CPT is shown in Table 1. 

 
Table 1: Example conditional probability table for 
system node from BN of Figure 1. 
 

𝐶! ⋯ 𝐶!!! 𝐶! 𝑠𝑦𝑠 
0 ⋯ 0 0 0 
0 ⋯ 0 1 0 
0 ⋯ 1 0 1 
0 ⋯ 1 1 0 
⋮ ⋮ ⋮ ⋮ ⋮ 
1 ⋯ 0 0 0 
1 ⋯ 0 1 1 
1 ⋯ 1 0 1 
1 ⋯ 1 1 1 

 
Note that the right-most column gives the 

state of the system given each combination of 
states of the components. It is this vector, 
comprised solely of 0s and 1s, which we seek to 
compress. Specifically, the developed algorithm 
utilizes compression techniques, including run-
length encoding and the classical Lempel-Ziv 
algorithm to compress the system CPT and 
achieve orders of magnitude savings in memory 
storage for the system CPT. 

A run is defined as consecutive bits of the 
same value. Run-length encoding stores runs in a 
dataset as a data value and count, making it well 
suited for data with many repeated values. 
However, mixed values are stored literally, 
which results in little gain for mixed data. 
Algorithms based on the classical Lempel-Ziv 
algorithm (Ziv and Lempel 1977) find patterns in 
the data, construct a dictionary of phrases, and 

encode based on repeated instances of phrases in 
the dictionary. The proposed compression 
algorithm uses both these ideas to compress the 
system CPT of the BN as a combination of runs 
and phrases. 

The proposed compression algorithm works 
by processing through the system CPT by row. 
Each row represents a distinct combination of 
component states. For each combination, a 
minimum cut set (MCS) or minimum link set 
(MLS) formulation of the system is used to 
determine the system state. A MCS is a 
minimum set of components whose joint failure 
constitutes failure of the system; if any one MCS 
fails, the system fails. Similarly, a MLS is a 
minimum set of components whose joint survival 
constitutes survival of the system; if any one 
MLS survives, the system survives. Each 
combination of component states in the system 
CPT (see Table 1) is checked against the MCSs 
or MLSs to determine the system state. Once the 
system state, i.e., 0 or 1, has been found, that 
value is encoded as a run or a phrase. The 
compression algorithm continues through the 
remaining rows of the system CPT until all rows 
have been processed. The resulting compressed 
combination of runs and phrases is typically 
orders of magnitude smaller than the size of the 
original CPT. 

3.2. Inference Algorithm 
Once the system CPT for the BN has been 
constructed in a compressed form, inference is 
required to draw conclusions about the system. 
We consider exact methods of inference since 
sampling-based approximate methods often yield 
poor convergence due to the small probabilities 
of events being modeled. Of the two major 
algorithms used for exact inference, the junction 
tree (JT) algorithm and the variable elimination 
(VE) algorithm (Dechter 1999), we use VE, as 
the BN in Figure 1 is comprised of only one 
clique of size 𝑛 + 1 , and computation of the 
potential over this clique increases exponentially 
as the size of the system increases. 

In VE, nodes in the BN are eliminated, one 
by one, to arrive at the query node, the node for 
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which the posterior (updated) probability 
distribution is of interest. Elimination of each 
node consists of summing the joint distribution 
over all states of the node, resulting in an 
intermediate factor 𝜆 that is used during the next 
step of elimination. For the system in Figure 1, 
suppose we are interested in the posterior 
distribution of the state of 𝐶!, given a particular 
state 𝑠𝑦𝑠 of the system. The VE calculation for 
this query is 
 
𝑝 𝐶!, 𝑠𝑦𝑠
= ⋯ 𝑝 𝐶!

!!!!

𝑝 𝐶! ⋯𝑝 𝐶!!! 𝑝 𝐶! 𝐶𝑃𝑇!"!

= 𝑝 𝐶! 𝑝 𝐶!
!!

⋯ 𝑝 𝐶!!!
!!!!

𝑝 𝐶!
!!

𝐶𝑃𝑇!"!

= 𝑝 𝐶! 𝑝 𝐶!
!!

⋯ 𝑝 𝐶!!!
!!!!

𝜆! = ⋯

= 𝑝 𝐶! 𝜆! 
   

where 𝐶𝑃𝑇!"! is the compressed system CPT and 
𝜆!  is the intermediate factor created after the 
elimination of component 𝐶! . The key to 
successfully performing inference for a large 
system is that each subsequent 𝜆! must also be 
compressed using the same compression 
algorithm as used for 𝐶𝑃𝑇!"! . The developed 
inference algorithm is able to perform VE on the 
compressed 𝐶𝑃𝑇!"!  and 𝜆!  matrices without 
decompressing or recompressing. Therefore, the 
memory storage gains achieved by compressing 
the system CPT are preserved throughout the 
process for inference. 

4. RESULTS 

4.1. Example System 
We start with the 8-component example system 
shown in Figure 2, adopted from Bensi et al. 
(2013). The system consists of a parallel 
subsystem 𝐶!,𝐶!,𝐶!  and series subsystems 
𝐶!,𝐶!,𝐶!  and 𝐶!,𝐶! . Because the objective is 

to see how the proposed algorithm scales, we 
increase the number of components in the first 

two subsystems to a total number of components 
in the system 𝑛. The resulting analysis of these 
two expanded systems shows how the proposed 
algorithm performs compared to existing 
algorithms for systems of increasing size. 

 

 
 
Figure 2. Example 8-component system, which is 
expanded to 𝑛 components in following analysis. 

4.2. Memory Storage 
We examine the performance of the new 
algorithm compared to existing algorithms on 
two measures: memory storage and computation 
time. 

Figure 3 shows the maximum number of 
values that must be stored in memory during the 
running of the algorithms, which is used as a 
proxy to assess the memory storage requirements 
of each algorithm. The algorithms are run in 
Matlab v7.10 on a 32 Gb RAM computer. 
Results from running the new algorithm are 
compared to using the existing JT algorithm, as 
implemented in the Bayes Net Toolbox by 
Murphy (2001). 

 
Figure 3. Number of values stored using the new vs. 
existing JT algorithm as a function of system size. 
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Figure 3 shows that the proposed algorithm 
achieves significant gains in memory storage 
demand compared to the existing algorithm. For 
the existing JT algorithm, the memory storage 
demand increases exponentially with the number 
of components in the system. In fact, the 
algorithm runs out of memory for a system 
comprised of more than 24 components. The 
memory storage demand of the proposed 
algorithm not only does not increase 
exponentially, but remains constant. The total 
number of values stored is 15, compared to 2!!! 
for the size of the CPT. 

While the size of this particular CPT, i.e., 15 
elements, is specific to the system studied here, 
the orders of magnitude reduction in required 
memory storage is typical. The memory storage 
demand for a general system will depend on the 
number of runs and phrases in the CPTs and 
intermediate factors to be compressed, with the 
size of the compressed matrices a function of the 
number of switches between runs and phrases in 
the original matrices. Increasing the length of a 
given run or increasing the number of repeated 
instances of a given phrase, for example, will 
increase the number of rows in the original 
matrix being processed using the compression 
algorithm, but it will have no effect in increasing 
the memory storage demand of the proposed 
algorithm. 

4.3. Computation Time 
Figure 4 shows computation times required to 
run the new and existing algorithms with 
increasing system size. The computation times 
are broken into the various functions for each 
algorithm. 
 

 
 

Figure 4. Computation times for the new vs. existing 
algorithm as a function of system size. 

 
Taking Figures 3 and 4 together, we see the 

classic storage space versus computation time 
trade-off, as described in Dechter (1999). In 
Figure 4, we see that the gain in memory storage 
achieved by the new algorithm is accompanied 
by an increased computation time, as the new 
algorithm requires significantly longer 
computation time, especially during the 
initialization phase. However, the time to 
perform inference for both algorithms is 
exponentially increasing with the system size. 
One should note that, while analysis with the 
new algorithm may take longer, large systems 
simply cannot be solved using the existing 
algorithm due to exceeding the memory capacity. 

4.4. Heuristic Augmentation 
In this section, we present two heuristics to 
improve the computational efficiency of the 
proposed algorithm. The first aims to improve 
the efficiency of the compression process, while 
the second focuses on the efficiency of the 
inference calculations. 

To compress the full system CPT, the 
compression algorithm must run through each of 
the 2! distinct combinations of component states 
(rows of the CPT). This leads to an exponentially 
increasing computation time for compressing the 
system CPT. However, knowledge about the 
structure of the system can be used to reduce the 
number of rows to be analyzed. For example, if 
component 𝐶! on its own constitutes a MCS, i.e., 
failure of 𝐶! leads to system failure, we need not 
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check the states of other components when 𝐶! is 
in the failed state. 

In general, determining the optimal ordering 
of nodes in a BN is an NP-hard problem. The 
heuristic employed here is to order the 
components in the system such that components 
that constitute MCSs on their own are numbered 
first and appear to the left in the CPT. Knowing 
where these components appear in the CPT 
enables us to know which rows in the CPT need 
not be processed when running the compression 
algorithm. Figure 5 shows the result of applying 
this heuristic. 

 

 
Figure 5. Computation times to compress the system 
CPT for systems with increasing number of 
components in the series vs. parallel subsystems, 
without vs. with the heuristic employed. 

 
Figure 5 shows significant reduction in the 

computation times achieved by employing the 
above heuristic. In addition, we see that the 
algorithm performs better for systems with an 
increased number of parallel components 
compared to series components. The algorithm, 
therefore, is better suited to systems that have 
few MCSs comprised of many components each, 
compared to systems that have many MCSs of 
few components each. In the latter case, it would 
be preferable to use an MLS formulation of the 
system. 

During the VE process for inference, all 
nodes other than the query node must be 
eliminated to arrive at the posterior probability 
distribution of the query node. When we arrive at 
the query node, it is necessary to move it to the 
left end of the CPT. This requires reordering of 
the elements in the 𝜆!  factor, which is a 

computationally demanding effort. The heuristic 
employed here is to order the components such 
that query components appear as far to the left in 
the CPT as possible. This minimizes the number 
of operations that must be performed to reorder 
𝜆!. 

Figure 6 shows the result of applying this 
heuristic. The computation times for forward and 
backward inference in systems with an 
increasing number of components in the series 
and parallel subsystems are plotted. Figures 6(a), 
6(b), and 6(c) respectively show the results from 
using the new algorithm without the heuristic 
employed, the existing JT algorithm, and the new 
algorithm with the heuristic employed. 

 
Figure 6. Computation times for forward and 
backward inference using the new vs. existing 
algorithm, without vs. with the heuristic employed. 
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Comparing Figures 6(a) and 6(b), we see 
that the new algorithm without the heuristic 
employed requires longer computation times for 
inference than the existing JT algorithm. In 
addition, the computation times for both 
algorithms increase exponentially as the system 
size increases. However, in Figure 6(c) we see 
that with the heuristic employed, the new 
algorithm achieves computation times that are 
orders of magnitude faster than either of the 
other algorithms: four orders of magnitude faster 
than the new algorithm without the heuristic 
employed, and three orders of magnitude faster 
than the existing JT algorithm. In addition, the 
computation times are linearly, not 
exponentially, increasing with increasing system 
size. The reason for this is that when the 
heuristic is employed, the computation time 
becomes a function of not the full size of the 
𝜆! ’s, which exponentially increase with the 
system size, but a function of the size of the 
compressed 𝜆! ’s, which we have seen remain 
constant with increasing system size. With the 
memory storage savings already demonstrated, 
these heuristics significantly improve the 
computational efficiency of the compression and 
inference algorithms, enabling large systems to 
be modeled as BNs. 

5. CONCLUSION 
We have developed a novel compression 
algorithm that achieves significant savings in 
memory storage of the system CPT for a BN 
model. In addition, we have developed an 
inference algorithm that operates on the 
compressed CPT’s. It is shown that by 
implementing the proposed algorithms, the 
memory storage demand not only does not 
exponentially increase as the number of 
components in the system increases, but remains 
constant. We also present two heuristics, which 
significantly improve the computational 
efficiencies of the algorithms. Together, these 
algorithms enable large systems to be modeled as 
BNs for system reliability analysis. 
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