
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 1

Compression and Inference Algorithms for Bayesian Network
Modeling of Infrastructure Systems

Iris Tien
Assistant Professor, School of Civil and Environmental Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

Armen Der Kiureghian
Professor, Department of Civil and Environmental Engineering, University of California, Berkeley,
Berkeley, CA, USA

ABSTRACT: The Bayesian network (BN) is an ideal tool for modeling and assessing the reliability of
civil infrastructure, particularly when the information about the system and its components is uncertain
and evolves in time. One of the major limitations of the BN framework, however, is the size and
complexity of the system that can be tractably modeled as a BN. This is due to the size of the
conditional probability table (CPT) associated with the system node in the BN model, which grows
exponentially with the number of components in the system. In this paper, we present novel
compression and inference algorithms that utilize compression techniques to achieve significant
savings in memory storage of the system CPT. In addition, heuristics developed to improve the
computational efficiency of the algorithms are presented. An application to an example system
demonstrates the gains in both memory and computation time requirements achieved by the proposed
algorithms.

1. INTRODUCTION
Infrastructure systems are essential for a
functioning society. Our nation’s infrastructure is
aging and becoming increasingly unreliable with
potentially severe consequences. The Bayesian
network (BN) is an ideal tool for modeling and
assessing the reliability of civil infrastructure,
particularly when information about the system
and its components is uncertain and evolves in
time. The major obstacle to the widespread use
of BNs for system reliability analysis, however,
is the limited size and complexity of the system
that can be tractably modeled as a BN. This is
due to the exponentially increasing number of
elements that must be stored in the conditional
probability table (CPT) for the system node in
the BN as the number of components in the
system increases.

In this paper, novel compression and
inference algorithms developed to address this
limitation are proposed. The algorithms are

applied to the analysis of an example system, and
the performance along both memory storage and
computational efficiency metrics is evaluated
compared to existing methods. The gains
achieved by the developed algorithms enable
larger systems to be modeled as BNs for system
reliability analysis.

2. BACKGROUND AND RELATED WORK
Previous work using BNs for system reliability
assessment have been limited to the study of
small systems, e.g., systems comprised of 5, 8,
and 10 components in Kim (2011), Mahadevan
(2001), and Bobbio et al. (2001), respectively.
Boudali and Dugan (2005) use BNs to model the
reliability of slightly larger systems, including a
system of 16 components. However, the authors
state that this “large number” of components
makes it “practically impossible” to solve the
network without resorting to simplifying
assumptions or approximations. It is clear that

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 2

even a network of 16 components is not enough
to create a full model of many real-world
systems.

This limitation in system size is due to the
conditional probability tables (CPTs) that must
be associated with each node in the BN. The
CPT defines the conditional probability mass
function of the node, given each mutually
exclusive combination of the states of its parent
nodes. Consequently, the size of the CPT grows
exponentially with the number of parents of the
node. For example, if every node has m states,
then the CPT has 𝑚!!! entries, where 𝑛 denotes
the number of parents. For an infrastructure
system comprised of 𝑛 interconnected
components 𝐶!,… ,𝐶!, the state of each of the
constituent components impacts the state of the
overall system. Therefore, the BN is as shown in
Figure 1.

Figure 1: BN of system comprised of n components.

The individual component nodes are parents
to the system node, denoted sys in the BN. Let us
consider a binary system, where the components
and the system are each in one of two possible
states, e.g., survival or failure. For a system of
100 components, therefore, the CPT for the
system node consists of 2!"! = 2.5×10!"
individual terms. This poses a significant
memory storage challenge for constructing and
analyzing the BN.

One approach to address this limitation is to
utilize Reduced Ordered Binary Decision
Diagrams (ROBDDs), as in Nielsen et al. (2000),
to efficiently perform inference in BNs
representing large systems with binary nodes.
However, a troubleshooting model is considered,

which includes a major assumption of single-
fault failures. It is this assumption that bounds
the size of the ROBDD and enables modeling of
larger systems. For more general systems, this
single-fault assumption cannot be guaranteed,
and the gains from using the ROBDD may not be
applicable.

Another recent approach by Bensi et al.
(2013) has been to optimize the topology of the
BN to address the inefficiency of a converging
BN structure as shown in Figure 1. This method
seeks to create a chain-like BN model of the
system with minimal clique sizes. The proposed
optimization program, however, must consider
the permutation of all component indices and,
therefore, may itself become intractably large for
large systems.

In this paper, we propose novel compression
and inference algorithms to address the
limitation in system size in BN modeling of
infrastructure systems. Note that while the
algorithm presented is for binary systems, it can
be extended to multi-state flow systems, e.g.,
where the component states are discretized
values of flow capacity, e.g., 0%, 50%, and
100% of maximum capacity. In addition, while
the proposed algorithms are able to
accommodate the case of dependent components,
as indicated by the dotted arrows to parent nodes
above the component nodes, this paper focuses
on the system description part of the BN
enclosed in the dashed box, which models the
system performance.

3. PROPOSED ALGORITHMS

3.1. Compression Algorithm
For the BN representation of a system as shown
in Figure 1, the component states
deterministically define the system state. That is,
for any combination of the component states, we
know with certainty whether the system is in
either a survival or a failure state. This model is
particularly useful for studying the reliability of
infrastructure systems, such as gas, power, or
transportation systems, where the states of
individual gas pipelines, electrical transmission

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 3

lines, or roadways directly determine the state of
the infrastructure system. When the component
states deterministically define the system state,
the CPT associated with the system node has a
special property. For a binary system, let us
define failure as 0 and survival as 1. Since for
each distinct combination of component states
the system state is known with certainty, the
system CPT is comprised solely of 0s and 1s.
The proposed compression algorithm takes
advantage of this property. An example of the
system CPT is shown in Table 1.

Table 1: Example conditional probability table for
system node from BN of Figure 1.

𝐶! ⋯ 𝐶!!! 𝐶! 𝑠𝑦𝑠
0 ⋯ 0 0 0
0 ⋯ 0 1 0
0 ⋯ 1 0 1
0 ⋯ 1 1 0
⋮ ⋮ ⋮ ⋮ ⋮
1 ⋯ 0 0 0
1 ⋯ 0 1 1
1 ⋯ 1 0 1
1 ⋯ 1 1 1

Note that the right-most column gives the

state of the system given each combination of
states of the components. It is this vector,
comprised solely of 0s and 1s, which we seek to
compress. Specifically, the developed algorithm
utilizes compression techniques, including run-
length encoding and the classical Lempel-Ziv
algorithm to compress the system CPT and
achieve orders of magnitude savings in memory
storage for the system CPT.

A run is defined as consecutive bits of the
same value. Run-length encoding stores runs in a
dataset as a data value and count, making it well
suited for data with many repeated values.
However, mixed values are stored literally,
which results in little gain for mixed data.
Algorithms based on the classical Lempel-Ziv
algorithm (Ziv and Lempel 1977) find patterns in
the data, construct a dictionary of phrases, and

encode based on repeated instances of phrases in
the dictionary. The proposed compression
algorithm uses both these ideas to compress the
system CPT of the BN as a combination of runs
and phrases.

The proposed compression algorithm works
by processing through the system CPT by row.
Each row represents a distinct combination of
component states. For each combination, a
minimum cut set (MCS) or minimum link set
(MLS) formulation of the system is used to
determine the system state. A MCS is a
minimum set of components whose joint failure
constitutes failure of the system; if any one MCS
fails, the system fails. Similarly, a MLS is a
minimum set of components whose joint survival
constitutes survival of the system; if any one
MLS survives, the system survives. Each
combination of component states in the system
CPT (see Table 1) is checked against the MCSs
or MLSs to determine the system state. Once the
system state, i.e., 0 or 1, has been found, that
value is encoded as a run or a phrase. The
compression algorithm continues through the
remaining rows of the system CPT until all rows
have been processed. The resulting compressed
combination of runs and phrases is typically
orders of magnitude smaller than the size of the
original CPT.

3.2. Inference Algorithm
Once the system CPT for the BN has been
constructed in a compressed form, inference is
required to draw conclusions about the system.
We consider exact methods of inference since
sampling-based approximate methods often yield
poor convergence due to the small probabilities
of events being modeled. Of the two major
algorithms used for exact inference, the junction
tree (JT) algorithm and the variable elimination
(VE) algorithm (Dechter 1999), we use VE, as
the BN in Figure 1 is comprised of only one
clique of size 𝑛 + 1 , and computation of the
potential over this clique increases exponentially
as the size of the system increases.

In VE, nodes in the BN are eliminated, one
by one, to arrive at the query node, the node for

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 4

which the posterior (updated) probability
distribution is of interest. Elimination of each
node consists of summing the joint distribution
over all states of the node, resulting in an
intermediate factor 𝜆 that is used during the next
step of elimination. For the system in Figure 1,
suppose we are interested in the posterior
distribution of the state of 𝐶!, given a particular
state 𝑠𝑦𝑠 of the system. The VE calculation for
this query is

𝑝 𝐶!, 𝑠𝑦𝑠
= ⋯ 𝑝 𝐶!

!!!!

𝑝 𝐶! ⋯𝑝 𝐶!!! 𝑝 𝐶! 𝐶𝑃𝑇!"!

= 𝑝 𝐶! 𝑝 𝐶!
!!

⋯ 𝑝 𝐶!!!
!!!!

𝑝 𝐶!
!!

𝐶𝑃𝑇!"!

= 𝑝 𝐶! 𝑝 𝐶!
!!

⋯ 𝑝 𝐶!!!
!!!!

𝜆! = ⋯

= 𝑝 𝐶! 𝜆!

where 𝐶𝑃𝑇!"! is the compressed system CPT and
𝜆! is the intermediate factor created after the
elimination of component 𝐶! . The key to
successfully performing inference for a large
system is that each subsequent 𝜆! must also be
compressed using the same compression
algorithm as used for 𝐶𝑃𝑇!"! . The developed
inference algorithm is able to perform VE on the
compressed 𝐶𝑃𝑇!"! and 𝜆! matrices without
decompressing or recompressing. Therefore, the
memory storage gains achieved by compressing
the system CPT are preserved throughout the
process for inference.

4. RESULTS

4.1. Example System
We start with the 8-component example system
shown in Figure 2, adopted from Bensi et al.
(2013). The system consists of a parallel
subsystem 𝐶!,𝐶!,𝐶! and series subsystems
𝐶!,𝐶!,𝐶! and 𝐶!,𝐶! . Because the objective is

to see how the proposed algorithm scales, we
increase the number of components in the first

two subsystems to a total number of components
in the system 𝑛. The resulting analysis of these
two expanded systems shows how the proposed
algorithm performs compared to existing
algorithms for systems of increasing size.

Figure 2. Example 8-component system, which is
expanded to 𝑛 components in following analysis.

4.2. Memory Storage
We examine the performance of the new
algorithm compared to existing algorithms on
two measures: memory storage and computation
time.

Figure 3 shows the maximum number of
values that must be stored in memory during the
running of the algorithms, which is used as a
proxy to assess the memory storage requirements
of each algorithm. The algorithms are run in
Matlab v7.10 on a 32 Gb RAM computer.
Results from running the new algorithm are
compared to using the existing JT algorithm, as
implemented in the Bayes Net Toolbox by
Murphy (2001).

Figure 3. Number of values stored using the new vs.
existing JT algorithm as a function of system size.

C1

C2

C3

C4 C5 C6

C7 C8 source sink

6 8 10 12 14 16 18 20 22 24
100

102

104

106

108

total number of components in system

m
ax

im
um

 n
um

be
r o

f e
le

m
en

ts
 s

to
re

d

New
Existing
out of memory

(1)

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 5

Figure 3 shows that the proposed algorithm
achieves significant gains in memory storage
demand compared to the existing algorithm. For
the existing JT algorithm, the memory storage
demand increases exponentially with the number
of components in the system. In fact, the
algorithm runs out of memory for a system
comprised of more than 24 components. The
memory storage demand of the proposed
algorithm not only does not increase
exponentially, but remains constant. The total
number of values stored is 15, compared to 2!!!
for the size of the CPT.

While the size of this particular CPT, i.e., 15
elements, is specific to the system studied here,
the orders of magnitude reduction in required
memory storage is typical. The memory storage
demand for a general system will depend on the
number of runs and phrases in the CPTs and
intermediate factors to be compressed, with the
size of the compressed matrices a function of the
number of switches between runs and phrases in
the original matrices. Increasing the length of a
given run or increasing the number of repeated
instances of a given phrase, for example, will
increase the number of rows in the original
matrix being processed using the compression
algorithm, but it will have no effect in increasing
the memory storage demand of the proposed
algorithm.

4.3. Computation Time
Figure 4 shows computation times required to
run the new and existing algorithms with
increasing system size. The computation times
are broken into the various functions for each
algorithm.

Figure 4. Computation times for the new vs. existing
algorithm as a function of system size.

Taking Figures 3 and 4 together, we see the

classic storage space versus computation time
trade-off, as described in Dechter (1999). In
Figure 4, we see that the gain in memory storage
achieved by the new algorithm is accompanied
by an increased computation time, as the new
algorithm requires significantly longer
computation time, especially during the
initialization phase. However, the time to
perform inference for both algorithms is
exponentially increasing with the system size.
One should note that, while analysis with the
new algorithm may take longer, large systems
simply cannot be solved using the existing
algorithm due to exceeding the memory capacity.

4.4. Heuristic Augmentation
In this section, we present two heuristics to
improve the computational efficiency of the
proposed algorithm. The first aims to improve
the efficiency of the compression process, while
the second focuses on the efficiency of the
inference calculations.

To compress the full system CPT, the
compression algorithm must run through each of
the 2! distinct combinations of component states
(rows of the CPT). This leads to an exponentially
increasing computation time for compressing the
system CPT. However, knowledge about the
structure of the system can be used to reduce the
number of rows to be analyzed. For example, if
component 𝐶! on its own constitutes a MCS, i.e.,
failure of 𝐶! leads to system failure, we need not

0.0001

0.001

0.01

0.1

1

10

100

1000

6 8 10 12 14 16 18 20 22 24

co
m

pu
ta

tio
n

tim
e

[s
]

New - compression
P(sys|C1) inference
P(C1|sys) inference
Existing - initialization
P(sys|C1) inference
P(C1|sys) inference

total number of components in system

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 6

check the states of other components when 𝐶! is
in the failed state.

In general, determining the optimal ordering
of nodes in a BN is an NP-hard problem. The
heuristic employed here is to order the
components in the system such that components
that constitute MCSs on their own are numbered
first and appear to the left in the CPT. Knowing
where these components appear in the CPT
enables us to know which rows in the CPT need
not be processed when running the compression
algorithm. Figure 5 shows the result of applying
this heuristic.

Figure 5. Computation times to compress the system
CPT for systems with increasing number of
components in the series vs. parallel subsystems,
without vs. with the heuristic employed.

Figure 5 shows significant reduction in the

computation times achieved by employing the
above heuristic. In addition, we see that the
algorithm performs better for systems with an
increased number of parallel components
compared to series components. The algorithm,
therefore, is better suited to systems that have
few MCSs comprised of many components each,
compared to systems that have many MCSs of
few components each. In the latter case, it would
be preferable to use an MLS formulation of the
system.

During the VE process for inference, all
nodes other than the query node must be
eliminated to arrive at the posterior probability
distribution of the query node. When we arrive at
the query node, it is necessary to move it to the
left end of the CPT. This requires reordering of
the elements in the 𝜆! factor, which is a

computationally demanding effort. The heuristic
employed here is to order the components such
that query components appear as far to the left in
the CPT as possible. This minimizes the number
of operations that must be performed to reorder
𝜆!.

Figure 6 shows the result of applying this
heuristic. The computation times for forward and
backward inference in systems with an
increasing number of components in the series
and parallel subsystems are plotted. Figures 6(a),
6(b), and 6(c) respectively show the results from
using the new algorithm without the heuristic
employed, the existing JT algorithm, and the new
algorithm with the heuristic employed.

Figure 6. Computation times for forward and
backward inference using the new vs. existing
algorithm, without vs. with the heuristic employed.

0

100

200

300

400

6 8 10 12 14 16 18 20 22 24

co
m

pu
ta

tio
n

tim
e

to

co
m

pr
es

s
sy

st
em

 C
P

T
[s

]

total number of components in system

New - increase series, w/o heuristic

New - increase series, w/ heuristic

New - increase parallel, w/o heuristic

New - increase parallel, w/ heuristic

6 8 10 12 14 16 18 20 22 24

5

10

15

20

25

30

(a) New − w/o heuristic

inc series − P(sys|C1)

inc series − P(C1|sys)

inc parallel − P(sys|C1)

inc parallel − P(C1|sys)

6 8 10 12 14 16 18 20 22 24

1

2

3

4

5

(b) Existing

c
o

m
p

u
ta

ti
o

n
 t

im
e

 f
o

r
in

fe
re

n
c
e

 [
s
]

inc series − P(sys|C1)

inc series − P(C1|sys)

inc parallel − P(sys|C1)

inc parallel − P(C1|sys)

6 8 10 12 14 16 18 20 22 24

0.6

0.8

1

1.2

1.4

1.6
x 10

−3 (c) New − w/ heuristic

total number of components in system

inc series − P(sys|C1)

inc series − P(C1|sys)

inc parallel − P(sys|C1)

inc parallel − P(C1|sys)

12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

 7

Comparing Figures 6(a) and 6(b), we see
that the new algorithm without the heuristic
employed requires longer computation times for
inference than the existing JT algorithm. In
addition, the computation times for both
algorithms increase exponentially as the system
size increases. However, in Figure 6(c) we see
that with the heuristic employed, the new
algorithm achieves computation times that are
orders of magnitude faster than either of the
other algorithms: four orders of magnitude faster
than the new algorithm without the heuristic
employed, and three orders of magnitude faster
than the existing JT algorithm. In addition, the
computation times are linearly, not
exponentially, increasing with increasing system
size. The reason for this is that when the
heuristic is employed, the computation time
becomes a function of not the full size of the
𝜆! ’s, which exponentially increase with the
system size, but a function of the size of the
compressed 𝜆! ’s, which we have seen remain
constant with increasing system size. With the
memory storage savings already demonstrated,
these heuristics significantly improve the
computational efficiency of the compression and
inference algorithms, enabling large systems to
be modeled as BNs.

5. CONCLUSION
We have developed a novel compression
algorithm that achieves significant savings in
memory storage of the system CPT for a BN
model. In addition, we have developed an
inference algorithm that operates on the
compressed CPT’s. It is shown that by
implementing the proposed algorithms, the
memory storage demand not only does not
exponentially increase as the number of
components in the system increases, but remains
constant. We also present two heuristics, which
significantly improve the computational
efficiencies of the algorithms. Together, these
algorithms enable large systems to be modeled as
BNs for system reliability analysis.

6. REFERENCES
Bensi, M., Der Kiureghian, A., and Straub, D.,

“Efficient Bayesian network modeling of
systems,” Reliability Engineering and System
Safety, Vol. 112, pp. 200-213, 2013.

Bobbio, A., Portinale, L, Minichino, M., and
Ciancamerla, E., “Improving the analysis of
dependable systems by mapping fault trees into
Bayesian networks,” Reliability Engineering
and System Safety, Vol. 71, No. 3, pp. 249-260,
2001.

Boudali, H., and Dugan, J. B., “A discrete-time
Bayesian network reliability modeling and
analysis framework,” Reliability Engineering
and System Safety, Vol. 87, pp. 337-349, 2005.

Dechter, R., “Bucket Elimination: a Unifying
Framework for Reasoning,” Artificial
Intelligence, Vol. 113, pp. 41-85, 1999.

Kim, M. C., “Reliability Block Diagram with General
Gates and its Application to System Reliability
Analysis,” Annals of Nuclear Energy, Vol. 38,
pp. 2456-2461, 2011.

Mahadevan, S., Zhang R., and Smith, N., “Bayesian
networks for system reliability reassessment,”
Structural Safety, Vol. 23, pp. 231-251, 2001.

Murphy, K. P., “The Bayes Net Toolbox for
Matlab,” Computing Science and
Statistics: Proceedings of the Interface,
Vol. 33, October 2001.

Nielsen, T. D., Wuillemin, P. H., and Jensen, F.
V., “Using ROBDDs for inference in
Bayesian networks with troubleshooting as
an example,” Proceedings of the 16th
Conference in Uncertainty in Artificial
Intelligence, Stanford University, Stanford,
CA, pp. 426-435, June 30 – July 3, 2000.

Ziv, J., and Lempel, A., “A Universal Algorithm for
Sequential Data Compression,” IEEE
Transactions on Information Theory, Vol. 23,
No. 3, pp. 337-343, May 1977.

