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ABSTRACT: ADynamic Bayesian Network (DBN) is a useful tool for analyzing uncertain systems that evolve
with time.As such, it is useful in structural health monitoring applications where measurements can be noisy and
uncertain.We propose an algorithm that uses a DBN formulation of the system to assess the maximum response
of a structure under seismic load, given recordings from accelerometers placed on the structure. By investigating
the impact on the accuracy of the sensor characteristics, including the number of sensors, their positions within
the structure, and the precision of their measurements, the results of our analysis inform decision making on the
use of accelerometers in the monitoring of structures under seismic loads. We assume linear Gaussian response,
which is appropriate for serviceability studies. An example application demonstrates that the DBN is a powerful
tool for processing of information gained from monitoring devices.

1 INTRODUCTION

AdynamicBayesian network (DBN) is a statistical tool
used to perform prediction and inference in systems
evolving with time. The Kalman smoother (KS) is a
classical framework for processing of dynamic data
in linear Gaussian models, which can be represented
as a DBN. In this paper, we apply the KS to model
the response of a structure under seismic excitation.
Our goal is to infer the maximum response during the
earthquake, considering limited prior knowledge on
the ground motion and recordings of accelerometers
mounted on the structure. This analysis is useful for
structural health monitoring applications and informs
decision making regarding the use of accelerometer
measurements in structures under seismic load.
We assume the excitation to the system is a com-

bination of an earthquake-induced ground motion and
noise from ambient vibrations.The earthquake ground
acceleration is modeled as a filtered, modulatedwhite-
noise process and the dynamical system is idealized
as a cascaded system consisting of the ground motion
filter and the structure. Sensors mounted on selected
floors of the structure record the acceleration with
some measurement error. Our method allows for the
manager of the structure to tune the stochastic model
of the ground motion to the earthquake magnitude and

distance, which are assumed to become known shortly
after the event. The DBN processes the accelerome-
ter measurements to infer the maximum response of
interest.
The proposed formulation allows not only infer-

ence on the relative displacements and velocities of
the structure at each instant of time, but also the max-
imum of the structural response during the seismic
event. Specifically, we use the KS to infer the joint
probability distribution of displacement and velocity
responses at each time step. This information is nec-
essary to accurately estimate the distribution of the
maximum response.
An application of the proposed algorithm is pre-

sented using a shear-type multi-story building model,
with the goal of estimating the maximum inter-story
drift. We utilize analytical formulas and Monte Carlo
simulations to obtain and compare the distributions
of maximum inter-story drifts under seismic load.
We investigate the influence on the accuracy of the
estimation of the number of sensors, their positions
within the structure, and the precision of their mea-
surements. The present application is limited to linear
structural behavior to allow use of Gaussian models
and KS. As such, it is appropriate for operating basis
seismic events. Future studies will consider nonlinear
behavior.
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Figure 1. Dynamical system model, consisting of ground
and structural dynamical sub-systems.

2 FORMULATION OF THE METHOD

We first model the dynamical system as a cascaded
system of two dynamical sub-systems: a ground
dynamical system and a structural dynamical system
(Figure 1). The ground dynamical sub-system takes
a modulated white-noise input w, representing the
motion at the bedrock, and outputs the acceleration ag
on the ground surface. The structural dynamical sub-
system takes ag as excitation and produces the struc-
tural response us, the vector of nodal displacements
relative to the ground.
In the following, a capital bold letter denotes a

matrix, as M, a small bold letter denotes a vector, as
in us, and a small italic letter denotes a scalar quantity,
as in ug . Displacement and acceleration are denoted u
and a, respectively, while z includes displacement and
velocity. Subscripts gands indicate quantities for the
ground and structure, respectively.

2.1 Structural dynamical sub-system

The equations of motion for the structure subjected to
base motion is

where M, C, and K denote the mass, damping, and
stiffness matrices, respectively. f models a random
external force that represents both ambient vibrations
and the uncertainty in the external force distribution
during the seismic event. In first-order form, using
zT

s = [uT
s u̇T

s ], equation (1) becomes:

2.2 Ground dynamical sub-system

The equation describing the motion on the ground
surface relative to the bedrock is given by

where ωg and ξg define the frequency and damping
ratio of the ground filter and w denotes the modu-
lated white-noise acceleration at the bedrock. Written
in first-order form with zg =

[
ug u̇Tg

]
, equation (3)

becomes

The total acceleration at the surface of the ground,
ag , is obtained as

2.3 State-space representation

Combining equations (2), (4) and (5), we obtain a
representation of the full dynamical system in first-
order form. Defining the system state vector as
zT = [zTg zTs ], we have

Consistent with previous studies (e.g., Gasparini
et al. 1983), we define the matrix Ac and vec-
tor bc in a state-space representation of the system
in continuous time such that ż = Acz + bcw + Bcf .
Discretizing in time domain in the state-space frame-
work requires the standard transformationAd = eAc�t ,
bd = A−1

c (Ad − I) bc, and Bd = A−1
c (Ad − I ) Bc (as

in Bernal 2007). This leads to

as the full equation ofmotion for the system in discrete
time step k . For the sake of simplicity, hereafter we
drop the subscripts d andwrite the discretized equation
as zk+1 = Azk + bwk + Bf k .

2.4 Modeling the excitation

To represent the non-stationarity of groundmotion, we
model the acceleration at the bedrock as a modulated,
band-limited white-noise process. Thus,w is normally
distributed with zero mean and a time-varying vari-
ance σ2

w(t). Following Rezaeian and Der Kiureghian
(2010),σ2

w(t) is taken as proportional to a gammaprob-
ability density function (PDF). The gamma PDF is a
reasonable model for this purpose, since it is non-
negative, starts and ends at zero, and the shape is
skewed with a longer right tail, which is typical of
earthquake motions. The parameters of the gamma
PDF are determined in terms of descriptive variables
of the seismic event. Specifically, we take the mode of
the distribution to coincide with the time of the max-
imum intensity of the ground motion, tmax

eq , and the
middle 90% of the distribution to represent the effec-
tive duration of the earthquake motion, D5−95, which
wedefine as the timebetween5%and95%Arias inten-
sity values. These modeling assumptions lead to the
shape and scale parameters of the gamma distribution
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Figure 2. Bedrock excitation w with time-varying variance
σ2

w(t) proportional to the gamma PDF.

as k = tmax
eq

θ
+ 1 and θ = − 1

2 tmax
eq + 1

4

√
4t2eqmax + D2

5−95,
respectively. The distribution is scaled by a factor to
achieve the desired intensity of the motion. Figure 2
shows a realization of a modulated white noise with
tmax
eq = 20 sec, D5−95 = 25 sec, and a scale factor of
200. For this example, the discretization time step is
set as �t = 0.01 sec. This effectively cuts frequencies
off at 50Hz.

2.5 System evolution

Given the state-space representation of the system, the
system evolution from time step k to k + 1 is described
as in equation (7).We take fk to be normally distributed
with zero mean and covariance matrix σ2

f I, with sta-
tistically independent values for different time steps
and for different degrees of freedom. Including this
additional force increases the uncertainty in ourmodel.

2.6 Observation equation

We assume sensors measure the total acceleration of
the structure, which is given by

From equation (1) and z as defined in (6), we obtain:

Let S define a matrix that selects the degrees of free-
domwhere accelerometers are placed.The observation
equation at each time step k is then given by

where D = −SM−1[0 0 K C] is the observation
matrix.
We take the measurement error νk to be normally

distributed with zero mean and time-independent
variance σ2

ν , and, again, we assume errors at different
times are independent.

Figure 3. Representation of system as a DBN.

2.7 Dynamic Bayesian network (DBN)

The system to be analyzed is represented by the DBN
shown in Figure 3. The DBN consists of a sequence of
BNs, each representing the system at a slice in time,
1, . . . , n. Terms with zero indices represent initial val-
ues at time zero, which are also uncertain. We use the
Kalman filter approach as described below to process
the information in the DBN.

2.8 Kalman filter (KF)

To estimate the state of the system z taking into
account measurements y, we use a Kalman filter (KF)
approach. Using equation (6), we predict the mean
vector and covariance matrix of the system state at
step k as

where �Ek = bσ2
wk

bT + �2
ε . We then calculate:

ek is known as the innovation, Rk characterizes the
uncertainty due to the measurement error, and KGk is
the Kalman gainmatrix (Welch and Bishop 1995).The
innovation measures the difference between the mea-
surements and the predictedmean values.The Kalman
gain takes into account the accuracy of the observa-
tions to provide a weight on measurement information
compared to the prediction in updating the estimates.
Thus, the mean vector and covariance matrix of the
system state are updated as
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2.9 Kalman smoother (KS)

The KF performs a forward pass through the data to
update the estimates of the system state as information
from measurements becomes available. Once we have
information over a fixed time interval, we can perform
a backward pass through the data to further update our
estimates using the Kalman smoother (KS) (Murphy
2002).To apply the KS, we first compute the smoother
gain matrix:

We then update our estimates:

It is these final estimates of the system state from
applying the KS that we use to assess the maximum
response of the system.

2.10 Distribution of the maximum response

Let Z(t) be a linear function of system state zs. We
are interested in the probability of the nonstationary
process Z(t) exceeding a given threshold ζ during an
interval (0, T ), where T is the duration of the response.
We begin with the equation for the extreme value
Zmax = maxt Z(t) of a nonstationary process:

where ν(ζ+, t) is the mean ζ-level up-crossing rate
and T is the duration of the response. The approxima-
tion is based on an assumption of Poisson crossings
and is valid for high thresholds. Due to conditioning
on observed responses, Z(t) is no longer a zero-
mean process. Thus, to obtain ν(ζ+, t), we cannot
use the well-known formula for up-crossings of zero-
mean nonstationary Gaussian processes (Rice 1944).
Instead, we define the process X (t)= Z(t)− µZ (t),
where X (t) is a zero-mean process with σX (t)= σZ (t).
We use the fact that the up-crossings of the non-
zero-mean process Z(t) above a fixed threshold ζ are
identical to the up-crossings of the zero-mean process
X (t) above a time-varying threshold η(t)= ζ − µZ (t)
to obtain

in which

wherein η(t), σX (t), σẊ (t) and ρ = ρẊ (t)X (t) are all func-
tions of time.Using equations (22) and (21), after some
derivations, one obtains

where r = η̇ − ρησẊ
σX

and �(·) indicates the normal
CDF. Using equations (21) and (24), we obtain an
approximation of the CDF of the maximum response
Zmax.

2.11 Application

As an example of the proposed algorithm, we consider
a 10-story shear-type building with uniform mass and
stiffness, as shown in Figure 4. The parameters of the
structure are set such that the fundamental period of
the structure is 1 sec. We take the stochastic excita-
tion at the bedrock level as described for the example
realization in Figure 2, and the set the parameters of
the ground filter as ωg/2π = 1.5Hz and ξg = 0.4. The
ratio of σf /σw(tmax) is set at 0.3. The response we are
interested in is the inter-story drift between floors 4
and 5.

3 RESULTS

To investigate the accuracy of our approach, we sim-
ulate the seismic event and the ambient noise. We
compute the structural response from this generated
combined excitation, and we call this the “actual”
response. We then simulate measurements of this
response, including measurement noise. These are the
observations that we obtain from the accelerometers
mounted on the structure. Then, assuming we have
only these noisy measurements of floor accelerations,
we use our DBN formulation of the system to estimate
the response of the structure to the seismic loading.
In the results presented in this section, we first ana-

lyze the effect of the KS in improving the predictions
by KF. Next, we investigate the influence on the accu-
racy of the estimation of varying the characteristics of
the measurements used in the analysis, including the
number of sensors, their positions within the struc-
ture, and the precision of their measurements. Finally,
we compare the results we obtain from the analytical
solution to those from the Monte Carlo simulations to
analyze the distribution of the maximum response.
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Figure 4. 10-story shear-type building model.

3.1 KF vs. KS

With one sensor placed on the top floor of the building,
Figure 5 shows the resulting estimates of the inter-story
drift #5 compared to the simulated “actual” values,
using the KF versus the KS. The standard deviation of
measurement error is set at σv = 0.5m/s2. Because the
time histories are close, Figure 6 shows the results for
one particular peak that occurs at t = 19 sec.Any other
segment of the time history can similarly be chosen
to analyze the results of the estimation. Hereafter, we
only examine the segment of the time history around
the peak at the above selected time.
Figure 6 shows that, consistent with the theory,

employing the KS improves the accuracy of the esti-
mate of the inter-story drift compared to using only the

Figure 5. Estimate of the inter-story drift #5 using the KF
versus the KS.

Figure 6. Estimate of the inter-story drift using the KF
versus the KS, for the peak at t = 19 sec.

KF. Utilizing the additional information of the mea-
surements over the entire time history results in a KS
mean estimate that is closer to the actual inter-story
drift values and a decreased variance in the estimate,
resulting in a narrower-banded estimate.

3.2 Varying measurement characteristics

Figure 7 shows themeanKS estimates compared to the
actual inter-story drift values, as indicated by the solid
line, based on measurements from sensors placed in
varying configurations on the structure. The estimates
from one sensor placed on the bottom of the structure
at floor 1, from one sensor placed at the top of the
structure at floor 10, and from four sensors placed at
floors 1, 4, 7, and 10, are indicated by the dotted, dash-
dot, and dashed lines, respectively. Figure 8 shows
the standard deviations of the KS estimates over the
entire duration of the loading using the same sensor
configurations.
Figure 7 shows that more information results in

more accurate estimates of the response. The mean
estimate of inter-story drift utilizing themeasurements
from four sensors placed on the structure is more accu-
rate than the estimates that utilize measurements from
only one sensor. However, looking at the results of
using only one sensor, we see that the placement of
the sensor also matters. Because we are looking at the
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Figure 7. Mean KS estimates of the inter-story drift for
varying sensor number and placement, peak at t = 19 sec.

Figure 8. Standard deviations of KS-estimated inter-story
drift for varying sensor number and placement.

inter-story drift at floor 5 where no direct measure-
ments are being made, the sensors at the bottom and
top of the structure on floors 1 and 10, respectively, are
equally far from the response of interest. The accuracy
of the corresponding drift estimates, however, are not
equal. The mean estimate using the information from
the top sensor is more accurate than the mean esti-
mate using the information from the bottom sensor.
Correspondingly, in Figure 8, the standard deviations
are higher for the estimate that uses the sensor at the
bottom floor compared to the estimate that uses the
sensor at the top floor. Thus, the two figures show that
an accelerometer placed at the upper floor of a build-
ing instead of the lower floor leads to more accurate
estimates of the mean and a smaller variance.
This result is explained by considering the signal-

to-noise ratio (SNR). The amplitude of the floor
acceleration in response to a seismic excitation is
higher at the higher floors, sowith the same device, the
SNR is higher for measurements at the higher floors.
Therefore, if given the choice, one would prefer to
place accelerometers at the upper floors of a building
instead of the lower floors, to obtainmeasurements that
are more informative regarding the structural response
andwill result inmore accurate estimates of the system
state.
Figure 9 shows the mean KS estimates compared

to the actual inter-story drift values, as indicated by

Figure 9. MeanKS estimates of the inter-story drift varying
sensor precision, peak at t = 19 sec.

Figure 10. Standard deviations of KS-estimated inter-story
drift varying sensor precision.

the solid line, using measurements from one sensor
placed at the top of the structure at floor 10. This time,
we vary the precision of the sensors such that the mea-
surements are made with 0.5m/s2, 1m/s2, and 2m/s2
error, as indicated by the dotted, dash-dot, and dashed
lines, respectively. Figure 10 shows the standard devi-
ations of the KS estimates for the entire duration of
loading using of the same three levels of precision as
in Figure 9.
Figure 9 shows that more precise sensors result in

more accurate mean estimates of the system state, and
Figure 10 shows that increasing the precision of the
sensors reduces the variance of the estimate, although
the effect is not large. Improving the sensor by 4 times,
i.e., reducing the error in themeasurement from 2m/s2
to 0.05m/s2, only reduces the average standard devia-
tion of the estimate by about 30%, from 12× 10−4 m
to 8.5× 10−4 m. In contrast, reexamining Figure 8, we
see that changing the placement of the same single
sensor from the bottom of the structure to the top of
the structure reduces the average standard deviation of
the estimate by more than half, from 18× 10−4 m to
8.5× 10−4 m.
Finally, to compare the accuracy of the estimates

across different combinations of sensor number, place-
ment, and precision, Figure 11 shows the maximum
root mean square errors (RMSE’s) of the mean KS
estimates of the inter-story drift using one sensor at
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Figure 11. RMSE’s of KS-estimated inter-story drift
varying sensor number, placement, and precision.

the top floor compared to four sensors at floors 1, 4, 7,
and 10, andwith varying precisions of 0.5m/s2, 1m/s2,
and 2m/s2 error. Placing one sensor at the bottom floor
results in a maximum RMSE of .0059m, significantly
higher in magnitude than the results for the sensor at
the top floor and for the four sensors, and therefore is
not shown.
Figure 11 shows that keeping sensor precision con-

stant, placing four sensors on the building compared
to placing one on the top floor reduces the maximum
RMSE of the estimate by about 20% for the 2m/s2
error sensor, 30% for the 1m/s2 error sensor, and 40%
for the 0.5m/s2 error sensor. In addition, the maxi-
mumRMSE ofmounting four sensors of lesser quality
throughout the building is larger compared to mount-
ing one sensor of higher quality at the top floor of
the building. When comparing these two monitoring
strategies, an additional consideration to the accuracy
of the estimation of the system state is the reliability
of the structural health monitoring device. Assuming
equal device reliability, a monitoring system of four
sensors will be more robust to sensor device failure
than a system comprised of only one sensor.

3.3 Distribution of the maximum

Using theKS-estimateddistributionof the systemstate
using themeasurements from four sensors of precision
0.5m/s2 error placed one each at floors 1, 4, 7, 10,
we generate MC realizations of the process. Each MC
realization produces a time history of the inter-story
drift. Figure 12 randomly selects 10 of these realiza-
tions for plotting to compare to the KS estimates. The
thick solid line indicates the actual inter-story drift val-
ues, the thick dashed line indicates the KS-estimated
mean, and the thin dashed lines indicate the KS mean
+/− two standard deviations. The dotted lines indi-
cate the MC realizations. Taking the maximum of the
inter-story drift over the time period of analysis, Figure
13 shows the distributions of the maximum inter-story
drift for all 10 degrees of freedom of the structure.
In analyzing the distribution of the maximum

response, Figure 12 shows the MC realizations to lie
within the mean estimate of the response +/− two
standard deviations. Figure 13 shows the distributions
of the maximum inter-story drift for all stories. These

Figure 12. KS-estimated compared to MC realizations of
inter-story drift, peak at t = 19 sec.

Figure 13. Distributions of the maximum inter-story drift
from MC simulations for all 10 degrees of freedom of the
structure.

results enable us to obtain statistics of the maximum
inter-story drift for each story of the structure.We note
that the dispersions in these distributions are rather
small in spite of the stochastic nature of the excita-
tion. This is due to the conditioning on the measured
acceleration response.
In analyzing the distribution of the maximum

response, we also look at the probability that the max-
imum response will exceed a certain threshold level.
From both the analytical solution andMC simulations,
we obtain a complementary CDF that shows this prob-
ability of exceedance. The analytical solution uses the
approximation in Eq. (21), which is valid for high
thresholds and low probabilities of exceedance, and
the CDF’s fromMCare the empirical CDF’s. Figure 14
compares the complementary CDF’s for all 10 degrees
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Figure 14. Complementary CDF of maximum inter-story
drift: analytical vs. MC.

of freedom obtained from these two methods of anal-
ysis. The plot shows the probability of the maximum
inter-story drift exceeding a threshold as a function of
threshold value. The probabilities of exceedance are
on the y-axis on a logarithmic scale, and the thresh-
old values are on the x-axis. The solid lines indicate
the results from the analytical solution, and the dotted
lines indicate the results from MC.
In Figure 14, we see that the results from the ana-

lytical solution and MC are most consistent at high
degrees of freedom. At the upper floors of the struc-
ture, the acceleration response is higher, leading to
more accurate estimates. In addition, the analytical
results display a phenomenon that we know cannot
be true, namely a non-monotonically decreasing com-
plementary CDF for the probability that the maximum
response exceeds a threshold as a function of thresh-
old value, at high probabilities of exceedance. This
is due to the approximation made in Eq. (21). The
approximation assumes Poisson crossings of the pro-
cess above the threshold, and therefore is only valid
for high thresholds. The results in Figure 14 show this
to be the case. The anomalies in the analytical solution
occur at probabilities of exceedance above 0.25.
This result shows the limitations of the Poisson

crossings assumption in analyzing extreme values.The
analytical solution is really only valid for high thresh-
olds and low probabilities of exceedance. It is at these
high thresholds where damage occurs and it is the
structural response in this range that we are interested
in for our analysis. Therefore, focusing on these high
thresholds, we see close agreement between the com-
plementaryCDFs at probabilities of exceedance below
0.1 for all degrees of freedom. Figure 14 shows that
our methodology enables us to assess the maximum
response of a structure to seismic load and estimate the
probability that the maximum response will exceed a
high threshold.

4 CONCLUSION

We have developed a methodology that uses the DBN
framework to analyze the maximum response of a
structure to seismic loading based on measured accel-
erations. Investigating the influence of various sensor
characteristics on the accuracy of the estimation, we
show that sensor placement has a more significant
effect than sensor precision. Sensors placed at the top
of a structure aremore informative than sensors placed
at the bottom, and while increasing the precision of
the sensors does improve the estimation, the effect is
small.
We have presented an analytical solution to esti-

mate the maximum response, which produces results
that are consistent with MC simulations for high
thresholds.
The results from our analysis inform decision mak-

ing on the use of accelerometers mounted on the
structure for structural health monitoring applications
as well as provide insight on the applicability of ana-
lytical formulas to analyze the distribution of the
maximum response.
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