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ABSTRACT: A Bayesian Network (BN) is a useful tool for analyzing the reliability of systems. The BN
framework is limited, however, by the size and complexity of the system that can be tractably modeled. Each node
in a BN graph is associated with a Conditional Probability Table (CPT), the size of which grows exponentially
with the number of connected nodes in the graph, presenting a memory storage challenge in constructing and
analyzing the BN. In this paper, we look at binary systems, where components of the system are in either one of
two states, survival or failure, and the component states deterministically define the system state. This analysis
is particularly useful for studying the reliability of infrastructure systems, where, e.g., the states of individual
gas pipelines or roads directly impact the state of the overall natural gas or transportation system. We present a
compression algorithm for the CPTs of such systems so that they may be modeled on a larger scale as BNs. We
apply our algorithm to an example system and evaluate its performance compared to an existing algorithm.

1 INTRODUCTION

A Bayesian network (BN) is a probabilistic framework
well suited for modeling systems and analyzing their
reliability. A BN is a directed acyclic graph comprised
of' nodes and links. In the BN system model, the com-
ponents of the system are represented as the nodes of
the graph, and the directed links between the nodes
represent the dependencies between the components.
Since the state of the system depends on the states of
its components, the node representing the system is
defined as a child of the nodes representing the com-
ponents, i.e., links are directed from component nodes
to the system node. A BN model enables analysis of
the contributions of individual components to the over-
all system reliability and the identification of critical
components within the system.

As information in the model is handled probabilis-
tically, the BN framework is particularly useful for
decision-making under uncertainty for infrastructure
systems, where component demands and capacities are
uncertain. In addition, the BN framework allows for
updating of the network as new information, or evi-
dence, becomes available. When evidence on one or
more variables is entered into the BN, the information
propagates through the network to yield updated prob-
abilities of the system performance in light of the new
information. This enables decision making about the
system based on the most up-to-date information.

The BN framework is limited, however, by the size
and complexity of the system that can be tractably
modeled. Each node in the BN is associated with
a conditional probability table (CPT), which defines
the conditional probability mass function of the node,
given each mutually exclusive combination of the

states of its parent nodes. Consequently, the size of the
CPT grows exponentially with the number of parents
of the node. For example, if every node has m states,
then the CPT has m"*! entries, where n denotes the
number of parents. Thus, in a binary system with 100
binary components (i.e., each component having two
states, e.g., survival or failure), the CPT for the sys-
tem node consists of 2'%! =2.5E30 individual terms.
This poses a significant memory storage challenge in
constructing and analyzing the BN. For this reason, BN
modeling of systems has been limited to small systems,
typically of no more than 20 two-state components.

In this paper, we present a novel compression algo-
rithm to enable the modeling of large, complex systems
as BNs. The algorithm encodes the system CPT in
compressed form, both in the initial construction ofthe
BN and in the subsequent calculations for inference,
to achieve significant savings in memory storage. The
algorithm, however, necessitates longer computation
time. Thus, a trade-off is made between the demand
for memory storage, which has a hard limit, and the
demand for computation time. Several features are
added to the compression algorithm to reduce the com-
putation time. An example application demonstrates
the memory and computational demands of the pro-
posed algorithm versus the most widely used existing
algorithm.

2 RELATED WORK

Examples in the existing literature of the use of BNs
for modeling system performance are limited (Bensi
etal. 2011). Previous studies have focused on generat-
ing BNs from conventional system modeling methods,
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Figure 1. BN of a system with n components.

such as reliability block diagrams (Torres-Toledano
and Succar 1998) and fault trees (Bobbio et al. 2001).
However, these studies have been limited to small
systems comprised of no more than ten components.

More recently, BNs have been used to model the
reliability of slightly larger systems, including a sys-
tem of 16 components in Boudali and Dugan (2005).
However, the authors state that this “large number” of
components makes it “practically impossible” to solve
the network without resorting to simplifying assump-
tions or approximations. In addition, it is clear that
even a network of 16 components is not enough to
create a full model of many real-world systems.

A method utilizing Reduced Ordered Binary Deci-
sion Diagrams (ROBDDs) to efficiently perform infer-
ence in BNs representing large systems with binary
nodes is proposed in Nielsen et al. (2000). However, a
troubleshooting model is considered, which includes
a major assumption of single-fault failures. It is this
assumption that bounds the size of the ROBDD and
enables modeling of larger systems. For more general
systems, this single-fault assumption cannot be guar-
anteed, and the gains from using the ROBDD may not
be applicable. Finally, a topology optimization algo-
rithm is proposed in Bensi et al. (2013) to develop
a chain-like BN model of the system with minimal
clique sizes. The optimization program, however, must
consider the permutation of all component indices and,
therefore, may itself become intractably large for large
systems.

3 THE PROPOSED METHOD

3.1 Binary systems

Consider a system consisting of binary components,
i.e., where each component is in one of two possible
states, survival or failure. We assume the component
states deterministically define the system state and that
the system is also binary, i.e., for any combination of
the component states, the system is in either a survival
or a failure state. This model is particularly useful for
studying the reliability of infrastructure systems, such
as gas, power, or transportation systems, where the
states of individual gas pipelines, electrical transmis-
sion lines, or roadways directly determine the state of
the infrastructure system. The BN of a system with n
components Cy,...,C, is shown in Figure 1, where
sys denotes the system node.
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Table 1. Example CPT for a binary system with »n
components.

C, ... C,_q C, sys
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
. 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

As indicated by the dotted arrows in Figure 1, the
BN model accommodates parent nodes to the com-
ponent nodes, which may represent demands on the
components resulting from a hazard. Here, the com-
pression algorithm developed focuses on the system
description part of the BN enclosed in the dashed box,
which models the system performance. In addition,
while the algorithm is developed for binary systems,
it can be extended to multi-state flow systems, e.g.,
where the component states are discretized values of a
flow capacity, e.g., 0%, 50%, and 100% of maximum
capacity. In such a system, the flow capacity of indi-
vidual components determines the flow capacity of the
overall system.

When the component states deterministically define
the system state, the CPT associated with the system
node has a special property. Since for each distinct
combination of component states the system state is
known with certainty, the system CPT is comprised
solely of Os and 1s. Table 1 shows an example of
such a CPT for a binary system with binary compo-
nents. As seen in the rightmost column of the table, the
vector representing the system state given each dis-
tinct combination of component states is comprised
solely of Os and 1s and has the size 2" x 1. The pro-
posed compression algorithm takes advantage of this
property.

3.2 Compression algorithm

The developed algorithm utilizes compression tech-
niques, including run-length encoding and the classi-
cal Lempel-Ziv algorithm. A run is defined as consecu-
tive bits of the same value. Run-length encoding stores
runs in a dataset as a data value and count, making it
well suited for data with many repeated values. How-
ever, mixed values are stored literally, which results in
little gain for mixed data. Algorithms based on the clas-
sical Lempel-Ziv algorithm (Ziv and Lempel 1977)
find patterns in the data, construct a dictionary of
phrases, and encode based on repeated instances of
phrases in the dictionary. The proposed compression
algorithm uses both these ideas to compress the system
CPT of the BN.
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A binary system can be defined in terms of
its minimum-cut sets (MCSs) or minimum-link sets
(MLSs). A MCS is a minimum set of components
whose joint failure constitutes failure of the system;
if any one MCS fails, the system fails. Similarly, a
MLS is a minimum set of components whose joint
survival constitutes survival of the system; if any one
MLS survives, the system survives. Each combination
of component states in the system CPT (see Table 1)
is checked against MCSs or MLSs to determine the
system state. For a given combination of component
states, this is the rightmost value in the row, the last
column in Table 1. This value is then encoded in a
compressed form, with repeated values in the column
encoded as runs, and patterns in the column encoded as
phrases with an accompanying dictionary of phrases.
Note that we only need to compress the vector of sys-
tem states; there is no need to compress the entire CPT.
This is because the component states in any row can
be determined in terms of the row number due to the
specific pattern used in defining the component states
in the table. Specifically, the state of component i, s;,
inrow m of the CPT for a system of n total components
is determined according to the rule

0 lfceu‘( .) is odd
5= (1)
1 1[cea£( = 1) is even

where ceil(x) is the value of x rounded up to the nearest
integer. The result from employing the above algorithm
is that the full system CPT becomes encoded as a com-
pressed combination of runs and phrases. Typically, the
size of this data is orders of magnitude smaller than
the size of the CPT.

3.3 Inference

Once the system CPT for the BN has been constructed
in a compressed form, inference is required to draw
conclusions about the system. There are both exact
and approximate methods for inference. Approximate
methods are generally sampling based. However, for
a reliable system where failure events are rare, these
methods often yield poor convergence due to the
unlikelihood of the events that are being modeled, and
the number of simulations required to achieve a suf-
ficiently large sample is prohibitive. Therefore, exact
methods of inference are preferred and are considered
here.

There are two major algorithms used for exact infer-
ence: the junction tree (JT) algorithm (Spiegelhalter et
al. 1993) and the variable elimination (VE) algorithm
(Dechter 1999). The advantage of the JT algorithm
comes from breaking a network down into smaller
structures, or cliques. However, for the network we
have in Figure 1, the BN is comprised of only one
clique of size n + 1. As the size of the system increases,
computation of the potential over this clique during
the initialization of the JT increases exponentially

and becomes intractable. For this reason, here the VE
algorithm is used for inference.

As its name suggests, the VE algorithm works by
eliminating the nodes in the network, one by one, to
arrive at the query node, the node for which the pos-
terior (updated) probability distribution is of interest.
Elimination of each node corresponds to summing of
the joint distribution over all states of the node to be
eliminated, resulting in an intermediate factor that is
used during the next step of elimination. For the sys-
tem given in Figure 1, suppose we are interested in the
posterior distribution of the state of component 1 given
a particular state of the system. The VE calculation for
this query is

P(Cylsys)

= P(CJZP(CZ .Y Pla JZP(CR)CP -
= P(C) Z P(Cy). Z PG

= PR,

)

where CPTyy; is the compressed system CPT and A;
is the intermediate factor created after elimination of
node (component) i. Once the initial CPTy,, has been
compressed, the key to successfully performing infer-
ence for a large system is that each subsequent A; must
also be stored using the same compression algorithm
as used for CPTyy,. The algorithm for inference that
we have developed employs the VE method and is
able to handle the compressed CPTy,, and A; with-
out decompressing or recompressing. In this way, the
memory requirements for storing both the initial sys-
tem CPT and the intermediate factors during inference
are significantly reduced, enabling BN modeling of
large systems.

3.4 Example system

We start with the 8-component example system shown
in Figure 2(a), which is adopted from Bensi et al.
(2013). The system consists of a series subsystem
{C4, Cs, Cg}, and a parallel subsystem {C;, C,, C3}.
Because the objective is to see how the proposed algo-
rithm scales with increasing system size, we increase
the number of components in these subsystems and
analyze the performance of the algorithm as the num-
ber of components increases. We note that, as pointed
out by Der Kiureghian and Song (2008), Song and Ok
(2010) and Bensi et al. (2013), the system in Figure
2(a) can be more efficiently represented as a system of
three super-components, each super-component repre-
senting a series or parallel subsystem. However, here
we disregard this advantage in order to investigate the
system size effect.

We increase the number of components in the series
subsystem so that the total number of components in
the system is #, as in Figure 2(b). We also increase
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(b)

Figure 2. Example systems: (a) basic case, (b) with
increased components in series subsystem, and (c) with
increased components in parallel subsystem.

the number of components in the parallel subsystem
so that the total number of components in the system
is n, as in Figure 2(c). The resulting analysis of these
two expanded systems, Figure 2(b) and Figure 2(c),
with variable n shows how the proposed compression
algorithm performs compared to existing algorithms
to analyze systems of increasing size.

In order to determine the state of the system for
each distinct combination of the states of the compo-
nents, we use the MCS representation of the system.
A similar MLS formulation of the system can also
be used. The MCSs of the system in Figure 2(a)
are {(Cy, (2, C3, Cy), (C1, 2, C3, Cs),(C1, Ca, C3, C),
(C7),(Cg)}. The MCSs of the system in Fig-
ure 2(b) with the expanded series subsystem are
{(C1, G5, G5, C), ... (C1, (2, C3,Cy), (C4),(Cs)}. And
the MCSs of the system in Figure 2(c) with

the expanded parallel subsystem are {(Cy,...,C,_s,
Cn74)> (Cl’ ey Cn75s Cn73)> (Cl’ B Cn75a Cn72)>
(Cn—l)a (Cn)}
4 RESULTS

4.1 Inference

The BN is initialized with a prior probability of failure
for the parallel components, C;, C,, C; in Figure 2(b),
and Cy, ..., C,_s, in Figure 2(c), of 0.2, and a prior
probability of failure for the components in series, Cy,
..., Cy,inFigure 2(b), and C,_y4, ..., C,, in Figure 2(c),
of 0.01. We are interested in updating the probabilities
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of failure of the system and components given new
information, or evidence. The proposed new algorithm
consists of first implementing the developed compres-
sion algorithm for the full system CPT to construct the
BN, and then implementing the developed inference
algorithm to perform VE on the compressed matrices.

For illustration purposes, in the following we con-
duct inference using component 1. Figure 3(a) shows
the updated probabilities of system failure given the
evidence that component 1 has failed, i.e., C; =0.
Figure 3(b) shows the updated probabilities of failure
of component 1, given the evidence that the system
has failed. These updated probabilities are plotted as a
function of increasing system size, as indicated by the
increasing number of total components in the system,
n. The sequence connected by a solid line indicates
the results from increasing the number of compo-
nents in the series subsystem (Figure 2b), and the
sequence connected by the dashed line indicates the
results from increasing the number of components in
the parallel subsystem (Figure 2c).The results in Fig-
ure 3 show that the proposed algorithm successfully
performs both forward and backward inference. In Fig-
ure 3(a), we see that the probability that the system fails
increases as the number of components in the series
subsystem increases, as there are more MCSs that can
fail to lead to system failure. In contrast, as the num-
ber of components in the parallel subsystem increases,
for a system of 11 components or more, the updated
probability of system failure remains essentially con-
stant. This is because the probability of failure of
MCSs involving the increasing number of parallel
components becomes small, and the system failure
probability becomes dominated by the failure prob-
abilities of the two single-component minimum cut
sets {C,—1} and {C,}.

In Figure 3(b), we see that as the number of compo-
nents in the series subsystem increases, the conditional
probability that C; has failed given that the sys-
tem has failed increases. With an increased number
of components in the series subsystem, there are an
increased number of MCSs that involve component 1,
ie., {C1,(C,, C5,Ci},i=6,...,n. Since failure of any
of these MCSs leads to system failure, an increase in
the system size gives a higher probability that fail-
ure of component C; was “necessary” for the system
to fail. In contrast, as the number of components in
the parallel subsystem increases, the probability of
failure for component C; given system failure again
converges for a system of 11 components or more. In
this case, the evidence on the system state is not infor-
mative for the component, and the updated probability
of failure converges to the prior probability of failure
of component Cj.

4.2 Memory storage

To analyze the performance of the new algorithm com-
pared to existing algorithms, we first look at memory
storage. Figure 4 shows the maximum number of val-
ues that must be stored in memory during the running
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Figure 3. Updated probabilities of (a) system state given
component state, and (b) component state given system
state with increasing system size BN of a system with »
components.

of the algorithms, which is used as a proxy to assess
the memory storage requirements of each algorithm.
The algorithms are run in Matlab v7.10 on a 32 Gb
RAM computer. The circle marks indicate the maxi-
mum number of values stored when running the new
algorithm, including the values both in the compressed
CPT and in the accompanying phrase dictionary. The
squares indicate the maximum number of elements
stored during the construction of the BN using the
existing JT algorithm, as implemented in the Bayes
Net Toolbox by Murphy (2001). The “X” mark indi-
cates the maximum size of the system after which the
existing algorithm can no longer be used because the
memory demand exceeds the available memory stor-
age capacity. These results are the same for both the
system obtained from increasing the number of com-
ponents in the series subsystem (Figure 2b), and from
increasing the number of components in the parallel
subsystem (Figure 2c).

Figure 4 shows that the proposed new algorithm
achieves significant gains in memory storage demand
compared to the existing algorithm. For the existing

o MNew
Existing
< out of memory

maximum number of elements stored

] Q@ Qo8 08 oG g e Bog 8 D
] B 10 12 14 16 18 20 22 24
total number of components in system

o)

Figure4. Maximum number of elements that must be stored
using the new vs. existing algorithm as a function of system
size.

JT algorithm, the memory storage demand, as mea-
sured by the maximum number of values that must
be stored, increases exponentially with the number of
components in the system. In fact, the algorithm runs
out of memory on our 32Gb RAM computer for a
system comprised of more than 24 components. The
memory storage demand using the proposed new algo-
rithm, however, remains constant, even as the number
of components in the system increases.

4.3 Computation time

Figure 5 shows the computation times required to run
the algorithms with increasing system size. In Figure
5(a), the computation times are broken into the var-
ious functions for each algorithm. The bars labeled
“New — compression” indicate the time required to
compress the system CPT using the proposed com-
pression algorithm. The next two solid bars indicate
the time required to perform inference on the system
given {C; =0} and the time to perform inference on
the component C given {sys = 0}, respectively, using
the proposed compression algorithm based on the VE
method. The bars labeled “Existing — initialization”
indicate the time required to initialize the BN using
the existing JT algorithm. The next two bars with diag-
onal hatching indicate the time required to perform
inference on the system given information on the com-
ponent C, and to perform inference on the component
C) given information on the system, respectively, using
JT. The computation times are recorded for systems of
increasing size, as indicated by the total number of
components in the system.

The results in Figure 5(a) are for the case where the
size of the system increases by increasing the num-
ber of components in the series subsystem. Figure 5(b)
compares the computation times for the proposed algo-
rithm for the two systems in Figures 3(a) and 3(b).
Again the computation times are broken down into
the component for compressing the system CPT, to
perform inference on the system given the state of
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Figure 5. Computation times as function of system size: (a)
proposed algorithm vs. existing JT algorithm, (b) proposed
algorithm when increasing the number of components in the
series vs. parallel subsystems.

component C;, and to perform inference on compo-
nent C; given the state of the system. The solid bars are
for the case where the size of the system is increased
by increasing the number of components in the series
subsystem, and the bars with diagonal hatching are for
the case where the size of the system is increased by
increasing the number of components in the parallel
subsystem.

Taking Figures 4 and 5 together, we see the classic
storage space-computation time trade-off as described
in Dechter (1999). In Figure 5(a), we see that the new
algorithm requires longer computation times com-
pared to the existing JT algorithm. However, the time
to perform inference for both the new and existing
algorithms is exponentially increasing with the system
size. It is important to note that the natures of the mem-
ory and time constraints are fundamentally different.
Memory storage is a hard constraint. If the maximum
size of a CPT exceeds the storage capacity of a pro-
gram or machine, no analysis can be performed. In
contrast, computation time is more flexible. Indeed,
various recourses are available to address the com-
putational time, such as parallel computing. While
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reliability analyses will take longer using the new algo-
rithm, some problems simply cannot be solved using
existing algorithms.

In Figure 5(b), by comparing the results of increas-
ing the size of the series subsystem vs. the parallel
subsystem, we see that the algorithm performs slightly
better in the initial compression of the system CPT and
in both inference scenarios for the systems with an
increased number of parallel components. The algo-
rithm, therefore, is better suited to systems that can be
formulated as few MCSs comprised of many compo-
nents each, compared to systems formulated as many
MCSs of few components each. In the latter case, it is
preferable to use an MLS formulation of the system.

5 CONCLUSION

We have developed a compression algorithm that sig-
nificantly reduces the memory storage requirements
during the construction of a BN for system reliabil-
ity analysis. In addition, we have developed a variable
elimination (VE) algorithm to perform inference using
compressed matrices. It is shown that by implementing
the proposed algorithm, the memory storage demand
during construction of the BN and during inference not
only does not exponentially increase as the number
of components in the system increases, but essen-
tially remains constant. Together, these algorithms
enable large systems to be modeled as BNs for system
reliability analysis.
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