
Reliability Assessment of Critical Infrastructure
Using Bayesian Networks

Iris Tien, Ph.D., A.M.ASCE1; and Armen Der Kiureghian, Ph.D., M.ASCE2

Abstract: The authors present a Bayesian network (BN)-based approach for modeling and reliability assessment of infrastructure systems.
The BN is a powerful framework that is able to account for uncertainties in component and system parameters, and perform updating of
system assessments with new information. The exponential increase in memory storage required for the BN model as the size of the system
increases has limited the applicability of BNs for reliability assessment of large infrastructure systems. Recently, a data-compression method
was proposed to address this limitation. While significantly reducing the memory storage, computational time for constructing the BN and
performing inference increased. In this paper, new methodologies are developed to increase the computational efficiency of a compression-
based approach for BN modeling and reliability assessment of infrastructure systems. These include algorithms to improve the computational
efficiency of the initial compression for constructing the BN, subsequent inference over the network, and overall system formulation. The
algorithms are applied to a test example system to examine their performance for systems of increasing size, as well as to a 59-component
power distribution network to demonstrate application to real systems. Performance of the proposed methodologies is compared to that of an
existing, widely used BN algorithm. With the heuristics employed, the new algorithms are shown to achieve significant gains in both memory
storage and computation time, enabling the modeling of large infrastructure systems as BNs for system reliability analysis. DOI: 10.1061/
(ASCE)IS.1943-555X.0000384. © 2017 American Society of Civil Engineers.

Introduction

Infrastructure systems are complex, comprised of many intercon-
nected, interacting components. Ensuring the continued function-
ing of these systems in an uncertain and dynamically changing
environment is critical to the health, security, and growth of our
communities (Johansen et al. 2017). In this paper, the authors
present a Bayesian network–based approach for modeling and reli-
ability assessment of infrastructure systems. Bayesian networks
(BNs) are particularly well suited for reliability assessment of criti-
cal infrastructures because of their ability to account for uncertain-
ties in component and system performance, as well as for their ease
in updating system state assessments in light of new information. In
addition, their transparent graphical nature facilitates use by non-
experts in systems modeling and probabilistic analysis.

Previous studies of BN modeling for infrastructure systems,
however, have been limited by the size and complexity of the
system that can be tractably modeled as a BN. Specifically, expo-
nentially increasing memory demand as the size of the system
increases quickly renders the model intractable. To address this
limitation, the authors previously developed new methodologies
to enable the BN modeling of larger infrastructure systems than is
possible with existing methods (Tien and Der Kiureghian 2016).
Compression techniques were utilized to store the required prob-
abilistic data and new inference algorithms were developed that

directly utilize the compressed data without decompressing or
recompressing them, thus significantly reducing the requirements
for memory storage. However, these techniques, while drastically
reducing the memory demand, increase the required computation
time. In this paper, the authors enhance the proposed BN method-
ology for modeling and reliability assessment of infrastructure
systems by developing several heuristics and corresponding algo-
rithms that significantly improve the computational efficiency of
the method. The gained computational advantage is demonstrated
through a controlled example system with variable size. The meth-
odology is further illustrated by its application to a 59-component
power distribution network.

The rest of the paper is organized as follows: The authors first
provide a brief background on BNs and their use for reliability
assessment of critical infrastructure systems. Next, the authors
describe their compression-based approach for BN modeling of
larger systems. The authors describe three heuristics and corre-
sponding algorithms—algorithms for compression, inference, and
supercomponents—that are constructed to significantly improve
the computational efficiency of the proposed method to enable ap-
plication to reliability assessment of infrastructure systems. The au-
thors demonstrate the computational gain achieved by these new
algorithms by examining a test example with varying size. Finally,
the authors analyze a 59-component power distribution network to
demonstrate application of the new methodology to real systems.

Bayesian Networks and Their Use in Modeling
Infrastructure Systems

A Bayesian network is a probabilistic graph comprised of nodes
and links. Each node represents a random variable and each link
describes the probabilistic dependency among the variables it con-
nects. Fig. 1 shows a BN model of an infrastructure system, where
nodes C1; : : : ;Cn represent the states of components and the node
sys represents the state of the system. The state of the system de-
pends on the states of its constituent components. Therefore, there

1Assistant Professor, School of Civil and Environmental Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0355 (corresponding
author). E-mail: itien@ce.gatech.edu

2Taisei Professor of Civil Engineering Emeritus, Dept. of Civil and
Environmental Engineering, Univ. of California, Berkeley, CA 94720-1710;
President, American Univ. of Armenia, Yerevan 0019, Armenia.

Note. This manuscript was submitted on August 9, 2016; approved on
March 27, 2017; published online on July 8, 2017. Discussion period
open until December 8, 2017; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Infrastructure
Systems, © ASCE, ISSN 1076-0342.

© ASCE 04017025-1 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000384
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000384
mailto:itien@ce.gatech.edu

exists a link in the BN representing the dependency between every
component and the system node as shown in Fig. 1.

The BN formulation enables infrastructure system assessments
accounting for the probabilistic relationships between component
and system states. Extension to the modeling of multiple inter-
dependent infrastructure systems is also possible (Johansen and
Tien 2017). In addition, when new information about the system
is available, e.g., that a particular component is in the failed state,
information entered into any node propagates throughout the net-
work to update reliability assessments at all nodes. This feature of
BNs is particularly useful for probabilistic assessment of an infra-
structure system in an environment of evolving information, such
as that in the aftermath of a natural hazard as observations about the
states of system components are gradually made.

The BN as shown in Fig. 1, however, requires an exponentially
increasing amount of memory storage to construct as the number of
components in the system increases. This is attributable to the con-
ditional probability table (CPT) that must be associated with the
system node in the BN. The CPT for a given node defines the prob-
ability distribution of the variable represented by that node given
each of the mutually exclusive combinations of the states of the
parent nodes on which it depends. Consider a binary system with
n components, where the components and system can be in one of
two states: the functioning state indicated by the numeral 1, and the
failure state indicated by the numeral 0. The CPT for the system
node is then as shown in Table 1, where each row in the CPT gives
the state of the system in the last column given the states of the
components in the preceding columns. The CPT consists only of
0’s and 1’s because it is assumed that, given the states of the com-
ponents, the system state is known with certainty.

In general, it is only necessary to store the last column of the
CPT since the order of component states can be preselected (Tien
and Der Kiureghian 2015). For the binary system, the rightmost
column in the CPT consists of 2n elements. Thus, the size of the
CPT of the system node increases exponentially as the number of
components in the system increases. As an example, modeling an
infrastructure system comprised of 100 components requires stor-
age of a vector of length 1.27 × 1030 to build the BN. This clearly

poses a significant computational challenge, particularly for assess-
ment of infrastructure networks, which are typically large and com-
prised of many components.

The approach described above can be extended to systems with
multistate components, as long as the system state is described in a
binary sense. For example, consider a flow system, where each
component has multiple states of flow capacity and the system node
describes the flow capacity at one or more critical nodes. If the
system is defined as having failed if the flow capacity at any of
the critical nodes is below a safe threshold, then the system state
is either functioning (numeral 1) or failed (numeral 0). Hence, the
system column of the CPT again consists of 0’s and 1’s (Tong and
Tien 2017), and the methods described in this paper can be used. In
spite of this generality, in the remainder of this paper the authors
focus only on systems with binary components. Furthermore, the
scope of this paper is limited to systems with statistically indepen-
dent component states. For the case of dependent components,
parent variable updating and initial elimination of parent nodes
must be performed, as in Tien and Der Kiureghian (2016). The
reader is referred to that paper for the details.

BNs for Reliability Assessment of Critical
Infrastructure Systems

Despite the utility of BNs for reliability assessment and updating,
previous studies using BNs for infrastructure systems are limited.
The infrastructure systems analyzed are often simplified to accom-
modate the computational limitations of the BN framework. For
example, the power systems studied by Di Giorgio and Liberati
(2011, 2012) were modeled as cascaded systems, where the nodes
in each layer of the system depend only on the states of at most two
parent nodes. In reality, many infrastructure systems do not operate
as cascades; instead, failures can happen simultaneously across the
network. Jha (2009) used BNs to study critical transportation infra-
structure. However, the BN only included nodes for general risk
variables, rather than component nodes to investigate the effect of
individual component performance on system outcomes or to as-
sess reliability across an infrastructure network.

BNs have been used for the modeling and reliability assessment
of general systems. These studies, however, are limited in the sizes
of the systems modeled. For example, Torres-Toledano and Succar
(1998), Nielsen et al. (2000), Mahadevan et al. (2001), Bobbio et al.
(2001), and Boudali and Dugan (2005) analyzed systems of 5, 7,
8, 10, and 16 components, respectively. BN models of systems of
this size are not sufficient for meaningful studies of infrastructure
systems. Even for these relatively small systems, simplifying as-
sumptions have been employed, including a single-fault failure
assumption by Nielsen et al. (2000), and a branch and bound ap-
proach by Mahadevan et al. (2001) to discard events of relatively
low probability to reduce computational demand.

Bensi et al. (2013) proposed a method to address the system size
limitation in BNs by using a topology optimization approach. This
creates more efficient chainlike BNs rather than models with a con-
verging structure as shown in Fig. 1. However, the proposed opti-
mization program must consider all permutations of component
indices in the network and, therefore, may itself become intractably
large for large systems. Finally, Di Giorgio and Liberati (2012)
used BNs to analyze an electrical control system. However, exten-
sive simulation and sampling was used for inference in the study
because, as the authors state, “Computational resources were not
sufficient to perform an exact belief update.”

Sampling-based methods run many simulations over the net-
work to converge to a solution, while other approximate approaches
iteratively or recursively calculate narrowing bounds for system

C1 C2

sys

. . . Cn-1 Cn

Fig. 1. BN model of an infrastructure system comprised of n
components

Table 1. Example Conditional Probability Table for System Nodes

C1 ⋯ Cn−1 Cn sys

0 ⋯ 0 0 0
0 ⋯ 0 1 0
0 ⋯ 1 0 1
0 ⋯ 1 1 0
..
. ..

. ..
. ..

. ..
.

1 ⋯ 0 0 0
1 ⋯ 0 1 1
1 ⋯ 1 0 1
1 ⋯ 1 1 1

© ASCE 04017025-2 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

reliability. In both cases, computational requirements may exceed
what is feasible for an infrastructure reliability assessment, particu-
larly if real-time updating of system assessments in light of new
information is desired. In contrast, the authors focus on exact infer-
ence methods in this study. The algorithms and heuristics presented
in the following sections do not make any approximations and
provide exact inference calculations across the network. The au-
thors’ method enables direct computation of measures of reliability,
e.g., exact values of probabilities of failure of systems or compo-
nents, including conditional probabilities of failure based on current
component states.

In recent studies (Tien 2014; Tien and Der Kiureghian 2016),
the authors proposed a compression algorithm to store the system
CPT in a compact form to reduce the memory demand. Additional
algorithms were developed to perform inference in the BN without
decompressing or recompressing the CPT and other intermediate
data tables. As mentioned in the Introduction, this approach dras-
tically reduces the memory requirements. However, this improve-
ment is achieved at the expense of additional computation time.
In this paper, the authors present three heuristics and corresponding
algorithms that significantly reduce the computation time of the
compression-based approach without increasing the memory de-
mand. These enable the use of the proposed algorithms for BN
modeling and reliability assessment of infrastructure systems.

Proposed Methodologies for BN Modeling of
Infrastructure Systems

Algorithm for Computationally Efficient Compression

The concept of compression is to compress the system column in
the CPT, which is exponentially increasing in length, in a lossless
manner such that memory storage is reduced without loss of infor-
mation or making any approximations. As shown in Table 1, the
values in the system column in the CPT are either 0 or 1. The orig-
inal compression algorithm, which integrates the classical com-
pression techniques of run-length encoding [E. L. Hauck, “Data
compression using run length encoding and statistical encoding,”
U.S. Patent No. 4,626,829A (1986)] and the Lempel-Ziv algorithm
(Ziv and Lempel 1977), takes advantage of this property. Instead of
storing each of the 0 and 1 values, the system CPT is compressed
using a combination of runs and phrases (Tien and Der Kiureghian
2016). A run is defined as consecutive repetitions of the same
value. A phrase is defined as a repeated pattern in the values.

The system CPT is organized with C1; : : : ;Cn in the columns
left to right as in Table 1 such that the value ofCn alternates in every
row, the value of Cn−1 alternates every 2 rows, and so on, until the
value of C1 alternates only once, taking the value of 0 for rows
1; : : : ; 2n−1, and the value of 1 for rows 2n−1 þ 1; : : : ; 2n. With
this pattern, given a row number k, the state of component i, si,
i ¼ 1; : : : ; n, in that row of the CPT is 0 if ceilðk=2n−iÞ is odd,
and 1 if it is even. ceilðxÞ is the value of x rounded up to the nearest
integer. Thus, the authors find the states of all components in each
row and the first n columns of the full CPT matrix shown in Table 1
need not be stored. Instead, the focus is on the 2n-length rightmost
column in the CPT, and the authors use the compression algorithm
to reduce the elements to a combination of runs and phrases.

The compression algorithm operates row by row through the
full CPT. In each row, once the states of the components are de-
termined, they are checked against the set of minimum cut sets
(MCSs) of the system to determine the state of the system. A MCS
is a minimum set of components whose joint failure constitutes
failure of the system. A system may have any number of MCSs,

depending on the number of components and the system configu-
ration. The value of the system state (0 or 1) is then compressed
either as a run (as part of repeated instances of the same value) or a
phrase (as part of a pattern that may repeat through the full length of
the CPT, with phrases stored in a dictionary).

The compression algorithm results in a significantly reduced
memory requirement for the BN model. For example, a sequence
of 243 0’s in the CPT is stored as a run of value 0 and length 243,
i.e., as frun; 0; 243g, and the 600 element-length sequence
f1; 0; 0; 1; 0; 0; : : : ; 1; 0; 0g is reduced to the phrase f1; 0; 0g re-
peated 200 times, i.e., to fphrase; 1; 200g with the phrase labeled
as Phrase 1 in the dictionary. These savings in memory, however,
are accompanied by an increase in computation time (Tien and Der
Kiureghian 2013). This is an example of the classic trade-off of
storage space versus computation time, as described by Dechter
(1999). In this case, the increase in computation time can be pro-
hibitive in the modeling of large infrastructure systems.

The computational demand in the compression algorithm arises
from the algorithm running through each of the 2n distinct combi-
nations of component states for each row of the CPTand comparing
them with the set of MCSs. However, knowledge about the struc-
ture of the system can be used to reduce the number of rows to be
analyzed. For example, if components C1 and C2 jointly constitute
a MCS, i.e., joint failure of Components 1 and 2 leads to system
failure, the authors need not check the states of other components
when C1 and C2 are both in the failed state.

The first proposed heuristic in this paper uses this knowledge to
reduce the computational demand by strategically specifying the
order of the components. In general, determining the optimal order-
ing of nodes in a BN is a nondeterministic polynomial time (NP)-
hard problem. For this heuristic, the authors first order the MCSs by
size. The authors then order the components such that those in the
smallest MCSs are numbered first and appear in the leftmost col-
umns of the CPT. With this heuristic, the states of fewer compo-
nents need to be checked against MCSs during compression.
Furthermore, knowing where components in small MCSs appear
in failed states in the CPT enables the authors to know which rows
in the CPT need not be processed when running the compression
algorithm. One can show that, given the states of the components
s1; : : : ; sn for a system of n components, the corresponding row
number k in the CPT is given by

k ¼ 1þ
Xn
i¼1

si × 2n−i ð1Þ

For example, for a system of 10 components, the component
states f1; 0; 0; 1; 0; 1; 1; 1; 1; 0g appear in row 1þ 29 þ 26 þ 24 þ
23 þ 22 þ 2 ¼ 607 of the CPT. Thus, given the failed states of
components comprising a MCS, the authors can easily determine
the rows where the system is in the failed state and no further
matching with MCSs is necessary. These are rows where si ¼ 0
for the components included in the MCS and si ¼ 0 or 1 for
the components not included in the MCS. For example, if compo-
nent C1 constitutes a MCS on its own, the authors know that for
rows 1; : : : ; 2n−1 the system is in the failed state and no further
analysis is needed. If, instead, components C2 and C3 constitute
a MCS, then the authors know that for rows 1; : : : ; 2n−3 and 2n−1 þ
1; : : : ; 2n−1 þ 2n−3 the system is in the failed state. The authors call
these 0 intervals, i.e., intervals of rows in the system column of the
CPT that are in the 0 state.

Fig. 2 shows the flowchart of the compression algorithm with
this heuristic implemented. The inputs are the number of compo-
nents n and the set of MCSs fMCSg. The outputs are the com-
pressed system CPT, cCPTsys, and the initial dictionary of phrases

© ASCE 04017025-3 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

d0. In the first step, if the row number k is determined to be within
the 0 interval, then the authors need not continue through the bulk
of the algorithm process. In a 0 interval, it is clear that the values are
in a 0 run and the authors are able to directly move to updating the
length of the 0 run in the CPT. Compared to previous studies
[e.g., (Tien and Der Kiureghian 2016)], the authors need not com-
pute the states si, check against fMCSg to compute the system
state, determine if the state is part of a run or a phrase, etc. There-
fore, the full compression algorithm need only process through the
rows between the 0 intervals. This reduces the number of rows that
are processed and results in reduced time spent on compression.

Algorithm for Computationally Efficient Inference

Once the BN has been constructed, Bayesian updating must be
performed to draw inference about the system, e.g., posterior prob-
abilities of the system or selected component states, given informa-
tion about the state of certain components or the system itself.
The inference algorithm previously developed by Tien and Der
Kiureghian (2016) uses variable elimination (VE), whereby each
node in the network is eliminated, one by one, until one arrives
at a query node, a node for which the posterior probability is of
interest. Elimination of node i results in the calculation of an in-
termediate factor, λi. The reader is referred to the work of Dechter
(1999) for details on the VE algorithm.

To reduce the required memory storage, it is necessary for each
intermediate factor λi to also be compressed. The developed infer-
ence algorithm handles both the system CPT and the intermediate
factors λi in compressed form, without the need to decompress or
recompress these matrices. Therefore, the memory storage savings
achieved from the compression algorithm are preserved throughout
the elimination process for inference. The computational time for
inference, however, increases exponentially with size (Tien and Der

Kiureghian 2013). Therefore, a methodology must be developed to
increase computational efficiency of the inference algorithm and
enable modeling of large infrastructure systems.

In this paper, the second heuristic and related algorithm address
this need. Similar to construction of the BN, during VE, the selec-
tion of an optimal elimination ordering is an NP-hard problem.
The heuristic for the inference algorithm aims at ordering the com-
ponents in a particular way to improve computational efficiency,
without solving the optimization problem. In the VE inference,
all nodes other than the query node must be eliminated to arrive
at the posterior probability distribution of the query node. During
the node elimination process, when the authors arrive at the query
node, it is necessary to move it to the very left end of the CPT. This
requires reordering of the elements in the intermediate factor λi and
processing through each row of λi to do so. This is a computation-
ally demanding effort, particularly if the number of rows in λi
is large.

The heuristic developed is to order the components such that
query components appear as far to the left in the CPT as possible.
This is similar to the compression algorithm heuristic. However, the
greatest computational demand has been shown to be for compres-
sion (Tien and Der Kiureghian 2013). Therefore, combining this
heuristic with that for the compression algorithm results in the com-
ponents in the smallest MCSs being ordered first, directly followed
by the query components. For the inference algorithm, this reduces
the number of operations that must be performed to reorder λi when
arriving at a query node during the VE process.

As an example, given a 10-component system, if C9 is the query
component, the inference algorithm requires processing through
29 ¼ 512 rows of λ9 to reorder C9 to the left and create the new
λ9. However, suppose C1 and C2 have been numbered first based
on the compression algorithm heuristic. Next, the authors num-
ber the query component C9 according to the inference algorithm

Input:
Output:

for , do k 1 to 2n

n, MCS{ }
decision input/output processing step

information link

no

update length
of 1 run in CPT

update length
of 0 run in CPT

k 0 interval? run or phrase?
phrase

run

0 or 1?

1

0

new or existing phrase?

new

existing

update number
of instances of
phrase in CPT

add phrase to
dictionary

compressed CPT
cCPTsys

start

end

MCS{ }

determine
system statecompute si

yes

cCPTsys, d0

dictionary
d0

Fig. 2. Compression algorithm flowchart with component-order heuristic implemented

© ASCE 04017025-4 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

heuristic. The inference algorithm is then able to run without any
additional operations eliminating C10 and C8 down to C3, until it
arrives at the query component C9. In this step, reordering λ3 is
required. However, compared to the first case, the algorithm now
needs to process through only 23 ¼ 8 rows of λ3 for this step. Thus,
if query components are to the left in the CPT and are reached late
in the elimination order, the number of rows to process to reorder λi
is reduced, decreasing the time spent for inference. For each com-
ponent that is eliminated, the size of λi decreases by a factor of 2.
Therefore, in general, the number of operations is reduced by 2n̂ for
moving a query component n̂ places to the left.

Algorithm for Supercomponents

The algorithms and heuristics presented thus far have been for a BN
formulated as shown in Fig. 1, where each component is directly
connected to the system node. In practice, infrastructure systems
are often constructed with certain components in well-defined sub-
systems, e.g., with components arranged in series or parallel sub-
systems. In this case, systems can be more efficiently represented
by grouping these subsets of components into supercomponents
(SCs), as described by Pages and Gondran (1986) and used in the
multiscale modeling approach described by Der Kiureghian and
Song (2008) and Song and Ok (2010). In this section, the authors
discuss the treatment of SCs in the developed algorithms.

For a system of n components, let fpfg denote the vector
of length n defining the failure probabilities of components
C1; : : : ;Cn. Let nSC denote the number of SCs in the system. Each
SC comprises a simple subsystem of the overall system, specifi-
cally a subset of components that exist either in series or in parallel.
The authors assume that each component of the system can be a
member of at most one SC. Selection and definition of SCs is up
to the modeler. Any given system can be divided into SCs in multi-
ple ways. With series and parallel subsystems, the choice is clear,
and the selection of SCs is done so as to be nonoverlapping. Addi-
tionally, for consistency in the formulation, components that are not
in direct series or parallel configuration with other components to
form a SC are treated as SCs on their own. Thus, some SCs may be
comprised of only single components. Of course, the greater the
number of components that can be grouped into SCs, such that
nSC ≪ n, the greater the efficiency gained when employing the SC
formulation. The set of minimum cut sets of the system, fMCSg, is
defined in terms of the SCs.

Let cCPTSC denote the compressed CPT for a generic SC.
Because each SC is comprised of either a series or a parallel sub-
system of components, cCPTSC can be directly constructed with-
out employing the compression algorithm described in Fig. 2. Let
~ni denote the number of components comprising the ith SC. Based
on the definition of series and parallel systems, the cCPTSCi

for SC
subsystems consists of two rows and is defined as follows:

cCPTSCi
¼

8>>>><
>>>>:

�
run 0 2~ni − 1

run 1 1

�
for series SC

�
run 0 1

run 1 2~ni − 1

�
for parallel SC

ð2Þ

where each row of the matrices corresponds to one row of the com-
pressed SC CPTwith three elements: whether the entry is a run or a
phrase (run in all cases); the value of the run; and the length (num-
ber of repeated elements) of the run. As shown in Eq. (2), for the
series subsystem, all elements of the CPT SC vector will be 0, ex-
cept for the final row where all components in the SC are in the
survival state and thus the SC is in the survival state. For the parallel

subsystem, only for the first row, where all components in the SC
are failed, will the SC be in the failed state. Otherwise, for all other
rows in the CPT, the SC will be in the survival state. Since the
cCPTSCi

is comprised only of runs, the accompanying phrase
dictionary is d0 ¼ 0. For nQ query nodes, let SCQ denote the set
of SCs that house the query nodes Q. Also, let fpFjEg denote the
vector of length nSC defining the conditional failure probabilities
of the SCs, SC1; : : : ; SCnSC , given the evidence E (the available
information about the known states of components or system) so
that its ith element is fpFjEgi ¼ PrðSCi ¼ 0jEÞ, i ¼ 1; : : : ; nSC.

To perform inference on a system formulated in terms of SCs,
the authors employ the following algorithm for supercomponents,
which is a significant modification of the VE inference algorithm
described by Tien and Der Kiureghian (2016). The compression
algorithm referred to is the one shown in Fig. 2. In Step 4, in
the construction of cCPTSCj

, where Q ∈ SCj and ~nj > 1, the au-
thors need to open the SCj to access the components inside the SC
to perform inference on the query component(s). To do this, the
authors use the output from Step 3, PrðSCQjEÞ, which gives the
posterior state probabilities of the SCs with query nodes. Knowing
the failure criteria for series and parallel subsystems, the authors
can directly construct cCPTSCj

for series and parallel SCs as
follows:

cCPTSCj
¼

8>>>><
>>>>:

�
run Prðsys¼ 1jSCj ¼ 0Þ 2~n−1

run Prðsys¼ 1jSCj ¼ 1Þ 1

�
for series SC

� run Prðsys¼ 1jSCj ¼ 0Þ 1

run Prðsys¼ 1jSCj ¼ 1Þ 2~n−1

�
for parallel SC

ð3Þ

with the values in each row of the matrices corresponding to the
same elements as in Eq. (2). With the compressed CPT, the authors
are able to eliminate the nonquery components in SCj. The result of
the inference process as shown in Step 4 of the algorithm is the final
output, the posterior probability of the specific query component Q
of interest. An example implementation of this algorithm is given in
the section describing the power distribution system application.

Algorithm: Supercomponents
Input: nSC; fMCSg; fpfg, Q, E
Output: PrðQjEÞ
(1) Determine conditional failure probabilities of SCs for given
evidence:

For i←1 to nSC, do
Define cCPTSCi

according to Eq. (2).
Eliminate components in SCi using VE inference algorithm

with
Input: n ¼ ~ni; fpfg, cCPTSCi

, d0 ¼ 0, Q ¼ SCi, E
Output: fpFjEg

end
(2) Construct cCPTsys using compression algorithm with

Input: n ¼ nSC; fMCSg
Output: cCPTsys; d0

(3) Eliminate SCs using VE inference algorithm with
Input: n ¼ nSC; fpFjEg, cCPTsys, d0, Q ¼ SCQ, E
Output: fPrðSCQjEÞg

(4) Reorder SCs with query components and perform inference
by VE:

For j←1 to nQ, do
For k←SCQ down to 1, do

If Qj ∈ SCk

© ASCE 04017025-5 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Reorder λkþ1 s.t. SCk is ordered to extreme left,
i.e., numbered 1.

Else
Eliminate SCs using VE inference algorithm with
Input: n ¼ nQ; fPrðSCQjEÞg, cCPTsys, d0, SCj, E
Output: PrðSCjjEÞ

end
If Qj ∈ SCj where ~nj ¼ 1

Output: PrðQjjEÞ ¼ PrðSCjjEÞ
Else if Qj ∈ SCj where ~nj > 1

Construct cCPTSCj
according to Eq. (3).

Eliminate components in SCj using VE inference algorithm
with
Input: n ¼ ~nj; fpfg, cCPTSCj

, d0 ¼ 0, Qj, E
Output: PrðQjjEÞ

end

Results for Test Application

The authors apply the proposed algorithms and heuristics to an ex-
ample system, which is adopted from the eight-component system
of Bensi et al. (2013). The performance of the system is measured
by the ability to reach from source to sink through the labeled com-
ponents C1; : : : ;Cn. To analyze the performance of the algorithms
in modeling systems of increasing size, the authors apply the algo-
rithms to expanded versions of the example system, increasing the
total number of components in the system to n. Fig. 3(a) shows
the system obtained by increasing the number of components in
the series subsystem. For this system, the set of MCSs is fMCSg ¼
fðC1;C2;C3;C6Þ; : : : ; ðC1;C2;C3;CnÞ; ðC4Þ; ðC5Þg for a total of
n − 3 MCSs. Fig. 3(b) shows the system obtained by increasing
the number of components in the parallel subsystem to a total num-
ber of components n. For this system, the set of MCSs is fMCSg ¼
fðC1; : : : ;Cn−5;Cn−4Þ; ðC1; : : : ;Cn−5;Cn−3Þ; ðC1; : : : ;Cn−5;Cn−2Þ;
ðCn−1Þ; ðCnÞg for a total of five MCSs. All calculations reported
below were performed in MATLAB on a computer with 32 GB
RAM and 2.2 GHz Intel Core i7 processor.

Results for Compression Algorithm

Fig. 4 shows the time required to compress the system CPT with
(w/) and without (w/o) applying the compression algorithm heuris-
tic to the expanded example systems. In the example systems, the
two components to the extreme right of the system comprise a MCS
on their own. Therefore, these components are numbered first
and appear to the left in the CPT. Specifically, for the system in
Fig. 3(a), components C4 and C5 are renumbered 1 and 2, and for

the system in Fig. 3(b), components Cn−1 and Cn are renumbered
Components 1 and 2.

Fig. 4 shows significant reductions in computation times
achieved by employing the heuristic for the compression algorithm.
In addition, comparing the results for systems with increasing num-
bers of components in the series versus parallel subsystems, it is
clear that the algorithm performs better for the latter case. Thus, the
algorithm is better suited for systems formulated as a few MCSs of
many components each, compared to systems formulated as many
MCSs of few components each.

Results for Inference Algorithm

Fig. 5 shows the result of applying the inference algorithm heu-
ristic to the expanded example systems. The computation times
for a single run of the algorithms for forward (probability of system
state given C1 ¼ 0) and backward (probability of component state
given sys ¼ 0) inference in systems with an increasing number
of components in the series and parallel subsystems are plotted.
The existing method for comparison is the widely used junction
tree (JT) inference algorithm as implemented by Murphy (2001).
Figs. 5(a–c) respectively show the results for the existing algorithm
and the proposed new algorithm without and with the heuristic
employed. When implementing the heuristic, the orders in which
components appear in the CPTare C5;C4;C1;Cn;Cn−1; : : : ;C2 for
the system in Fig. 3(a) and Cn;Cn−1;C1;Cn−2;Cn−3; : : : ;C2 for
the system in Fig. 3(b).

Comparing Figs. 5(a and b), it can be seen that the new algo-
rithm without the heuristic employed requires longer computation
times for inference than the existing JT algorithm. In addition, the
computation times for both algorithms increase exponentially as
the system size increases. However, in Fig. 5(c) it is clear that with

C1

C2

C3

C6 Cn

C4 C5 source sink

(a)

C1

Cn-5

Cn-4 Cn-3 Cn-2

Cn-1 Cnsource sink

(b)

Fig. 3. Example test system: (a) expanded system with increased number of components in series subsystem; (b) expanded system with increased
number of components in parallel subsystem

0

100

200

300

400

6 8 10 12 14 16 18 20 22 24

co
m

pu
ta

tio
n

tim
e

to

co
m

pr
es

s
sy

st
em

 C
P

T
 [s

]

total number of components in system

New - increase series, w/o heuristic

New - increase series, w/ heuristic

New - increase parallel, w/o heuristic

New - increase parallel, w/ heuristic

Fig. 4. Computation times to compress the system CPTwithout versus
with heuristic implemented

© ASCE 04017025-6 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

the heuristic employed, the new algorithm achieves computation
times that are orders of magnitude smaller than either of the other
algorithms: four orders of magnitude faster than the new algorithm
without the heuristic employed and three orders of magnitude faster
than the existing JT algorithm.

In addition, and more importantly given the effect for large
systems, the computation times increase linearly, not exponentially,
with system size. The reason for this is that when the heuristic is
employed, the computation time becomes a function not of the full
sizes of the intermediate factors λi, which exponentially increase
with the system size, but of the size of the compressed λi’s, which
the authors showed previously to remain fairly constant with in-
creasing system size (Tien and Der Kiureghian 2013, 2016). With
the memory storage savings already demonstrated (Tien and Der
Kiureghian 2016), these heuristics utilizing a more effective order-
ing of the components significantly improve the computational ef-
ficiency of both the compression and inference algorithms.

Results for Supercomponent Algorithms

Fig. 6 shows the result of applying the algorithms for SCs to
the expanded example systems. Results are shown in terms of both
computation time (left ordinate, solid and dashed lines) and memory

storage (right ordinate, circles) for systems of increasing size. Total
computation times represent both the time for compression and the
time for forward or backward inference. The maximum number
of elements that must be stored during both the compression and
inference processes is used as a proxy for the memory storage
requirements of the new algorithm.

Fig. 6 shows that the total computation time is on the order of
10−2 s for a 100-component system. More importantly, the total
computation time increases linearly with increasing system size.
With regard to the memory storage, the maximum number of ele-
ments that must be stored remains constant, even as the total num-
ber of components in the system increases. Thus, at least for the
example systems examined, the authors have achieved significant
gains in both memory storage demand and computational effi-
ciency with the new algorithms. These enable larger infrastructure
systems to be modeled as BNs than is possible with previous
methods.

Application to a Power Distribution System

With the objective of reliability assessment of more realistic infra-
structure systems in mind, the authors now apply the algorithms
and heuristics to the modeling and reliability assessment of the
four-substation power network from Ostrom (2004) shown in
Fig. 7, based on information from Pacific Gas and Electric, which
was also investigated by Der Kiureghian and Song (2008). The
power network consists of three inputs and one output, and 59 com-
ponents numbered 1–59, where the circles, slashes, and squares
represent circuit breakers, switches, and transformers, respectively.
Power can flow along any black line, including between substations
via the connections shown. The authors assume that the prior prob-
ability of failure of each component in the system is 0.1. Other
fragility functions or models of component performance under dif-
ferent hazard scenarios can be integrated into the methodology
through the component failure probabilities.

For this system, the authors implement the method of SCs, rep-
resenting each triplet of switch-breaker-switch as a SC. Fig. 8 shows
the resulting system, where the dashed squares represent SCs. It is
this system of 59 components represented with 20 SCs that the
authors use for the analysis.

(c)

(b)

(a)

Fig. 5. Computation times for forward and backward inference using
(a) the existing JTalgorithm and the new inference algorithms; (b) with-
out the heuristic implemented; (c) with the heuristic implemented

Fig. 6. Computation times (left ordinate) and memory storage (right
ordinate) requirements for the new algorithm with supercomponents
heuristic implemented

© ASCE 04017025-7 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Implementation of Algorithms

The authors use this system to show an example implementation of
the presented algorithms. Suppose the backward inference problem
of obtaining the posterior distribution of C1 given that the system
has failed is of interest. C1 is an element of SC1. Using the algo-
rithm for supercomponents, in Step 1, the authors define cCPTSC1

according to Eq. (2). As SC1 is a series SC comprised of three com-

ponents, the result is cCPTSC1
¼

h run 0 7

run 1 1

i
. Next, the authors

eliminate the components in SC1 for the given evidence. Using
the VE inference algorithm with input n̂1 ¼ 3 and query Q ¼ SC1,
the output for the first element of fpFjEg is fpFjEg1 ¼
PrðSC1 ¼ 0jEÞ ¼ 0.2710. A similar process is performed for each
SC in the system to obtain the full vector fpFjEg.

In Step 2 of the algorithm, the compressed system CPT cCPTsys
is constructed. For this example, cCPTsys is as shown in Table 2.
No phrases are found, so the dictionary is d0 ¼ 0. cCPTsys is con-
structed using the compression algorithm and the set of minimum
cut sets fMCSg defined in terms of the SCs. The full cCPTsys con-
sists of 176 rows, so it is shown in Table 2 in abbreviated form with
an added column for repeated patterns of runs as indicated. In the
algorithm, cCPTsys is stored in full form with 528 total elements.
This is a lossless compressed representation of the 220 ¼ 1,048,576
rows of the original CPTsys (accounting for the SCs).

In Step 3, the posterior probability of C1, which is a part of SC1,
is of interest. Thus, the set of SCs that house the query nodes is
SCQ ¼ SC1. To obtain the posterior state probability of SC1, the
authors perform VE with Q ¼ SC1 to eliminate all other SCs with-
out query components until only SCQ remains. This results in the
output of the inference algorithm PrðSCQjEÞ ¼ 0.2729.

Finally, in Step 4, the authors need to open SCQ to perform in-
ference on the query component within. For SC1, which contains
query component C1, ~n1 ¼ 3, which is greater than 1. Thus, the
authors construct cCPTSC1

according to Eq. (3). This results in

the matrix cCPTSC1
¼

h run 0.7378 7

run 0.7403 1

i
. This is different from

the original cCPTSC1
matrix as constructed using Eq. (2). This is

because the authors are now beyond the step for initial construction
of the CPTs, and cCPTSC1

can be thought of as an intermediate
factor that gives the probability of survival of the overall system
given the failure or survival states of the SC. VE is performed
one final time with cCPTSC1

to eliminate the nonquery components
C3 and C2, resulting in the final posterior probability for the query
component, PrðC1jEÞ ¼ 0.1007.

Inference

The previous example illustrates the calculations to perform infer-
ence for one component. Given an infrastructure system comprised
of many interconnected components, such as the example system in
Fig. 7, system risk and reliability analyses enable identification of
critical components to support decision making regarding inspec-
tion, repair, and replacement. These analyses are performed using
inference. Figs. 9 and 10 show the results of performing forward
and backward inference, respectively, for the example power sys-
tem. By forward inference the authors mean determining the pos-
terior probability of system failure given failure of a component.
By backward inference, the authors mean determining the posterior
failure probability of each component given failure of the system.
Results are shown for component numbers in order of increasing
posterior failure probabilities.

Fig. 9 gives the probability of system failure given component
failure for each of the components 1–59. The results of this forward

= circuit breaker

= switch

= transformer

2

1

3

5

4

6

8

7

9

11

10

12

14

13

15

Substation 1

32

31

33

35

34

36

38

37

39

41

40

42

44

43

45

Substation 3

17

16

18

20

19

21

23

22

24

26

25

27

29

28

30

Substation 2

47

46

48

50

49

51

53

52

54

56

55

57

Substation 4

Input
I

Input
III

58

59

Output

Input
II

Fig. 7. Example power distribution system

= super-
 component

Substation 1

Substation 3

Substation 2

Substation 4

Input
I

Input
III

Output

Input
II

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 8. Example power distribution system represented in terms of
supercomponents

© ASCE 04017025-8 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

inference support decision making in the management of the power
system to minimize the risk of system failure. For example, know-
ing that the probability of system failure is 100% if components 58
or 59 fail clearly indicates the importance of these two components
and the need for regular inspection or retrofit of these components
to ensure system performance. At a less extreme level, it can be
seen that, for example, Components 46–48 are more critical than
Components 10–15. If each of these components is known to have

failed, the updated probability of system failure is 0.4247 for the
former set compared to 0.2604 for the latter set. Of course, results
can also be generated for the posterior probability of the system
failure for any set of multiple components known to have failed.

Fig. 10 gives the probability of component failure given system
failure for each of the components 1–59. The results of this back-
ward inference support decision making in the rehabilitation of the
power system to identify what may have led to system failure after
the failure event has been observed. For example, the probability
that Component 58 or 59 has failed has been updated from a prior
failure probability of 0.1 to 0.384. In contrast, Components 10–15
remain at a probability of failure of 0.1. The evidence on the system
state is not informative for these components, and the updated prob-
ability of failure virtually equals the prior failure probability.

These inference results enable the authors to identify the critical
components of a system and inform decision making in the priori-
tization of limited resources in the management and rehabilitation
of infrastructure systems.

Performance of Algorithms

For the power system shown in Fig. 7 and employing the compres-
sion algorithm heuristic and SC algorithm, the time required to
compress the system CPT is 12.8 s. The computation times required
for performing forward and backward inference, the results of
which are shown in Figs. 9 and 10, are given in Figs. 11 and 12,
respectively.

From Fig. 11, the average time required to compute the prob-
ability of system failure given component failure is 0.0212 s. In
Fig. 12 for backward inference, there is an exponential increase

Table 2. Compressed System CPT, cCPTsys, for Power System
Application

Run or phrase r or p Lr or np Repeated pattern

Run 0 656,640 A
Run 1 256
Run 0 128
Run 1 2,432
Run 0 1,024
Run 1 3,072
Run 0 1,280

A × 2

Run 1 2,816 B
Run 0 1,024
Run 1 3,072
Run 0 1,280

B × 4

Run 1 256 C
Run 0 128
Run 1 2,432
Run 0 1,024
Run 1 11,264
Run 0 128 D
Run 1 128

D × 1

Run 0 128 E
Run 1 384

E × 1

Run 0 128 F
Run 1 2,432

D × 1

Run 0 128 G
Run 1 11,904
Run 0 1,280
Run 1 2,816
Run 0 1,024
Run 1 27,648
Run 0 8,192
Run 1 8,192

D × 2, E × 1, D × 2, E × 1, D × 2, E × 1, D × 1

Run 0 128 H
Run 1 640

D × 1, H × 1, D × 1, H × 1, D × 1, H × 1, D × 1

Run 0 128
Run 1 8,832
Run 0 8,192
Run 1 24,576
Run 0 1,280

C × 1, D × 2, E × 2, F × 1, D × 1, G × 1

Run 0 1,280

C × 1, D × 2, E × 2, F × 1, D × 1, G × 1

Run 0 1,280

C × 1, D × 2, E × 2, F × 1, D × 1, G × 1

0.2604
0.2620

0.2622

0.2771
0.2787

0.2807

0.4247

1.0000

0.0

0.2

0.4

0.6

0.8

1.0

10
-1

5
25

-3
0

37
-3

9
43

-4
5

55
-5

7
4-

9
16

-1
8

31
-3

3
1-

3
49

-5
1

19
-2

1
40

-4
2

22
-2

4
34

-3
6

46
-4

8
52

-5
4

58
-5

9

P
(s

ys
 fa

il
| c

om
p

fa
il)

component #s

Fig. 9. Results of forward inference for power system application

0.1000
0.1006

0.1007

0.1064

0.1070
0.1078

0.1631

0.3840

0.0

0.2

0.4

0.6

0.8

1.0

10
-1

5
25

-3
0

37
-3

9
43

-4
5

55
-5

7
4-

9
16

-1
8

31
-3

3
1-

3
49

-5
1

19
-2

1
40

-4
2

22
-2

4
34

-3
6

46
-4

8
52

-5
4

58
-5

9

P
(c

om
p

fa
il

| s
ys

 fa
il)

component #s

Fig. 10. Results of backward inference for power system application

© ASCE 04017025-9 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

in the computation time as the component number increases. This is
because the backward inference time plotted for each Ci represents
the result from the analysis with a fixed ordering of components.
As described earlier, when arriving at a query node during the VE
inference algorithm, the intermediate factor λi must be reordered,
a computationally demanding operation. Therefore, query compo-
nents appearing to the left in the CPT, i.e., with lower numbers i,
require shorter computational times compared to those appearing to
the right, i.e., with higher numbers i. Fig. 12 shows the need for the
proposed inference algorithm heuristic, whereby query nodes are
ordered as far to the left in the CPT as possible. When doing so,
computation times for the query nodes will be similar to those for
Components 1–20 in Fig. 12.

Finally, the authors look at the memory storage requirements.
The maximum numbers of elements that must be stored to perform
forward and backward inference are 707 and 1,059, respectively.
These numbers should be compared with a memory storage de-
mand of 259 ¼ 5.8 × 1017 elements for a system of n ¼ 59 com-
ponents. Therefore, the ability to construct the BN and perform
inference using the new algorithms with only around 1,000 ele-
ments needed represents a many orders of magnitude reduction in
memory demand. The authors conclude that the new algorithms
together with the three heuristics achieve significant gains in both
memory storage and computation time, enabling larger systems to
be modeled as BNs for system reliability analysis.

Conclusion

In this paper, the authors presented methodologies to enable the
BNmodeling of critical infrastructure systems for reliability assess-
ment. These include more computationally efficient algorithms for
constructing the BN model and performing inference on the BN.
Heuristics for the compression and inference algorithms utilize the
ordering of the components to reduce the amount of needed com-
putations. The third heuristic addresses the BN formulation of the
system by employing the use of supercomponents. The heuristics
and corresponding algorithms are applied to example systems,
including a system of increasing size and a 59-component power
distribution network, and the improvements in efficiency are dem-
onstrated. With the heuristics employed, the new algorithms are
shown to achieve significant gains in both memory storage and
computation time, enabling the modeling of large infrastructure
systems as BNs for system reliability analysis.

Acknowledgments

The first author acknowledges support from the National Science
Foundation Graduate Research Fellowship from 2011 to 2014. Ad-
ditional support was provided by the National Science Foundation
Grant No. CMMI-1130061, which is also gratefully acknowledged.

References

Bensi, M., Der Kiureghian, A., and Straub, D. (2013). “Efficient Bayesian
network modeling of systems.” Reliab. Eng. Syst. Saf., 112(3),
200–213.

Bobbio, A., Portinale, L., Minichino, M., and Ciancamerla, E. (2001).
“Improving the analysis of dependable systems by mapping fault trees
into Bayesian networks.” Reliab. Eng. Syst. Saf., 71(3), 249–260.

Boudali, H., and Dugan, J. B. (2005). “A discrete-time Bayesian network
reliability modeling and analysis framework.” Reliab. Eng. Syst. Saf.,
87, 337–349.

Dechter, R. (1999). “Bucket elimination: A unifying framework for
reasoning.” Artif. Intell., 113(1), 41–85.

Der Kiureghian, A., and Song, J. (2008). “Multi-scale reliability analysis
and updating of complex systems by use of linear programming.”
Reliab. Eng. Syst. Saf., 93(2), 288–297.

Di Giorgio, A., and Liberati, F. (2011). “Interdependency modeling and
analysis of critical infrastructures based on dynamic Bayesian net-
works.” Proc., 19th Mediterranean Conf. on Control and Automation,
IEEE, New York.

Di Giorgio, A., and Liberati, F. (2012). “A Bayesian network-based ap-
proach to the critical infrastructure interdependencies analysis.” IEEE
Syst. J., 6(3), 510–519.

Jha, M. K. (2009). “Dynamic Bayesian network for predicting the likeli-
hood of a terrorist attack at critical transportation infrastructure facili-
ties.” J. Infrastruct. Syst., 10.1061/(ASCE)1076-0342(2009)15:1(31),
31–39.

Johansen, C., Horney, J., and Tien, I. (2017). “Metrics for evaluating and
improving community resilience.” J. Infrastruct. Syst., 23(2),
04016032.

Johansen, C., and Tien, I. (2017). “Probabilistic multi-scale modeling
of interdependencies between critical infrastructure systems for resil-
ience.” Sustain. Resilient Infrastruct., in press.

Mahadevan, S., Zhang, R., and Smith, N. (2001). “Bayesian networks for
system reliability reassessment.” Struct. Saf., 23(3), 231–251.

MATLAB [Computer software]. MathWorks, Natick, MA.
Murphy, K. P. (2001). “The Bayes net toolbox for Matlab.” Comput. Sci.

Stat., 33(2), 1024–1034.
Nielsen, T. D., Wuillemin, P. H., and Jensen, F. V. (2000). “Using ROBDDs

for inference in Bayesian networks with troubleshooting as an exam-
ple.” Proc., 16th Conf. in Uncertainty in Artificial Intelligence, Stanford
Univ., Stanford, CA, 426–435.

C
i

10 20 30 40 50

tim
e

fo
r

P
(s

ys
|C

i)
[s

]

0

0.01

0.02

0.03

0.04

Fig. 11. Computation times for forward inference for power system
application

C
i

10 20 30 40 50

tim
e

fo
r

P
(C

i|s
ys

)
[s

]

0

2

4

6

8

10

Fig. 12. Computation times for backward inference for power system
application

© ASCE 04017025-10 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1016/j.ress.2006.10.022
https://doi.org/10.1109/JSYST.2012.2190695
https://doi.org/10.1109/JSYST.2012.2190695
https://doi.org/10.1061/(ASCE)1076-0342(2009)15:1(31)
https://doi.org/10.1061/(ASCE)1076-0342(2009)15:1(31)
https://doi.org/10.1016/S0167-4730(01)00017-0

Ostrom, D. (2004). “Database of seismic parameters of equipment in
substations.” 〈http://peer.berkeley.edu/lifelines/lifelines_pre_2006/final
_reports/413-FR.pdf〉 (Mar. 1, 2014).

Pages, A., and Gondran, M. (1986). System reliability: Evaluation and
prediction in engineering, Springer, New York.

Song, J., and Ok, S. Y. (2010). “Multi-scale system reliability analysis of
lifeline networks under earthquake hazards.” Earthquake Eng. Struct.
Dyn., 39(3), 259–279.

Tien, I. (2014). “Bayesian network methods for modeling and reliability
assessment of infrastructure systems.” Ph.D. thesis, Univ. of California,
Berkeley, CA.

Tien, I., and Der Kiureghian, A. (2013). “Compression algorithm for
Bayesian network modeling of binary systems.” Safety, reliability,
risk and life-cycle performance of structures and infrastructures,
G. Deodatis, B. Ellingwood, and D. Frangopol, eds., CRC Press,
New York, 3075–3081.

Tien, I., and Der Kiureghian, A. (2015). “Compression and inference algo-
rithms for Bayesian network modeling of infrastructure systems.” Proc.,
12th Int. Conf. on Applications of Statistics and Probability in Civil
Engineering, T. Haukaas, ed., Univ. of British Columbia, Vancouver,
BC, Canada.

Tien, I., and Der Kiureghian, A. (2016). “Algorithms for Bayesian network
modeling and reliability assessment of infrastructure systems.” Reliab.
Eng. Syst. Saf., 156(6), 134–147.

Tong, Y., and Tien, I. (2017). “Algorithms for Bayesian network modeling,
inference, and reliability assessment for multi-state flow networks.”
J.Comput.Civil Eng., 10.1061/(ASCE)CP.1943-5487.0000699, 04017051.

Torres-Toledano, J. G., and Succar, L. E. (1998). “Bayesian networks
for reliability analysis of complex systems.” Ibero-American Conf.
on Artificial Intelligence, Springer, Heidelberg, 195–206.

Ziv, J., and Lempel, A. (1977). “A universal algorithm for sequential data
compression.” IEEE Trans. Inform. Theory, 23(3), 337–343.

© ASCE 04017025-11 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2017, 23(4): 04017025

D
ow

nl
oa

de
d

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y

Ir
is

 T
ie

n
on

 0
7/

10
/1

7.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://peer.berkeley.edu/lifelines/lifelines_pre_2006/final_reports/413-FR.pdf
http://peer.berkeley.edu/lifelines/lifelines_pre_2006/final_reports/413-FR.pdf
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000699
https://doi.org/10.1109/TIT.1977.1055714

