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a b s t r a c t

Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as
Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory
storage required to construct the BN model, and an updating algorithm that performs inference on
compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for
system reliability assessment, namely the exponentially increasing amount of information that needs to
be stored as the number of components in the system increases. The proposed compression and in-
ference algorithms are described and applied to example systems to investigate their performance
compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement
are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger in-
frastructure systems.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Infrastructure systems are essential for a functioning society,
from distributing the water we drink, to delivering the electricity
we consume, to enabling transport of people and goods from
source to destination points. Our nation's infrastructure, however,
is aging and becoming increasingly unreliable with potentially
severe consequences. Given a complex infrastructure network
comprised of many interconnected components, system reliability
analysis is required to identify the critical components and make
decisions regarding inspection, repair, and replacement to mini-
mize the risk of system failure.

The Bayesian network (BN) is a useful probabilistic tool for
system reliability assessment. It is a graphical tool that offers a
transparent modeling scheme, allowing easy checking of the
model even by non-experts in systems analysis and probabilistic
methods. In an environment where information about a system is
evolving in time and is subject to uncertainty, BNs are able to
update the reliability state of the system as new information, e.g.,
from observations, inspections, or repair actions, becomes avail-
able. Infrastructure systems are subject to high degrees of un-
certainty, including discrepancies between initial design and
construction, uncertain degradation of system components over
time, and exposure to stochastic hazards. BNs provide the proper
probabilistic framework to handle such information for engineer-
ing decision making.

A major obstacle to widespread use of BNs for system reliability
assessment, however, is the limited size of the system that can be
tractably modeled as a BN. This is due to the exponentially in-
creasing amount of information that needs to be stored as the
number of components in the system increases. This paper pro-
poses a method to address this limitation.

The main contributions of this paper are novel compression
and inference algorithms that enable the modeling of larger
systems as BNs than has been previously possible. The paper is
organized as follows: Section 2 provides a brief background on
BNs, including the advantages of using BNs for system reliability
analysis and the current limitations in BN modeling of large
systems. Section 3 introduces the proposed compression algo-
rithm for constructing and storing the conditional probability
tables (CPTs) required by the BN. Section 4 describes the in-
ference algorithm for system reliability analysis, which uses the
compressed CPTs without decompressing them. Section 5 de-
monstrates the proposed algorithms through application to a test
system. Results for memory storage and computation time are
presented.
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Fig. 1. BN of a system comprised of n components.
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2. Background

2.1. Methods for system reliability assessment, including Bayesian
networks (BNs)

Over the years, many methods have been developed to assess
system reliability. While not intended to be an exhaustive list,
these include reliability block diagrams (RBDs), fault trees (FTs),
event trees (ETs), binary decision diagrams (BDDs), and Bayesian
networks (BNs). RBDs, FTs, and ETs are symbolic models showing
the logical relationships between component states and system
outcomes. These can be extended into BDDs, graphical models
representing Boolean relationships between variables. General
relationships between random variables can be modeled graphi-
cally using BNs.

RBDs are useful to show the components of a system and their
relationships; however, they are not efficient for reliability analysis
of complex infrastructure systems [17,20]. FTs have been used ex-
tensively in the nuclear industry [33]. They are constructed for a
particular undesired system outcome; hence, a single FT cannot
model all possible modes or causes of system failure [4]. ETs trace
forward through a causal chain to assess the probability of occur-
rence of different system outcomes. The size of an event tree,
however, can grow exponentially with the number of sequential
events [22]. BDDs are useful for modeling Boolean functions, as they
occur in system reliability analysis [1,7]. The number of nodes and
paths in a BDD is exponential with the number of variables in the
domain of the Boolean function [19]. For reliability analysis of an
infrastructure system, this implies a BDD of exponentially increas-
ing size as the number of components in the system increases.

A Bayesian network (BN) is a graphical model comprised of
nodes and links. Each node represents a random variable and each
link describes the probabilistic dependency between two variables.
Each BN node is assigned a set of mutually exclusive and collectively
exhaustive states. In our application, the nodes represent the states
of the system components and the overall system performance, and
the links describe the probabilistic dependencies between compo-
nent and system performance. The reader is referred to texts such
as [13] for further information on BNs.

As stated earlier, the capability of BNs for updating and hand-
ling of uncertain information and their graphical modeling re-
presentation makes them particularly well suited for reliability
assessment of infrastructure systems under evolving states of in-
formation [30]. There are both exact and approximate methods for
inference in BNs. These methods are applicable given a BN struc-
ture, to update probability assessments over the network in light
of new information. For the case where system topology changes,
as can occur in post-disaster scenarios, first a restructuring of the
BN, then performing inference over the new BN is necessary. Ap-
proximate inference methods are generally sampling based, in-
cluding importance sampling [23,35] and Markov chain Monte
Carlo [11]. In theory, these methods converge to the exact solution
for a sufficiently large number of samples. In practice, however,
the rate of convergence is unknown and can be slow [27]. This is
especially true when simulating events that are a priori unlikely.
Exact inference methods are, therefore, preferred. The algorithm
described in Section 4 is for exact inference.

2.2. Current limitations in BN modeling of large systems

The use of BNs for system reliability assessment has been
limited by the size and complexity of the system that can be
tractably modeled. Systems analyzed in previous studies have
been small, typically comprised of 5–10 components. This includes
studies on generating BNs from conventional system modeling
methods, e.g., RBDs [14,32] and FTs [5]. Mahadevan et al. [16]
demonstrate the ability of the BN to use system-level test data to
update information at the component level. They note that the
computational effort increases significantly with the number of
system components. They introduce an approach characterized as
“branch and bound,” whereby events of relatively low probability
are ignored, to apply the BN to larger systems. The example given,
however, is for a system consisting of only 8 components, and the
willful discarding of available information, leading to a subsequent
loss of accuracy in the result, is not ideal.

Boudali and Dugan [6] use BNs to model the reliability of
slightly larger systems, including a system of 16 components.
However, the authors state that this “large number” of components
makes it “practically impossible” to solve the network without
resorting to simplifying assumptions or approximations. Clearly,
even a system of 16 components is not enough to create a full
model of many real-world infrastructures. Nielsen et al. [19] pro-
pose a method utilizing Reduced Ordered Binary Decision Dia-
grams (ROBDDs) to efficiently perform inference in BNs re-
presenting large systems with binary components. However, a
troubleshooting model is considered, which includes a major as-
sumption of single-fault failures, i.e., the malfunction of exactly
one component causes the system to be at fault. In general, the
number of paths in the ROBDD is exponentially increasing with
the number of components. It is the single-fault assumption that
bounds the size of the ROBDD. For general systems, including in-
frastructure systems, this single-fault assumption cannot be
guaranteed. Therefore, the gains from using the ROBDD may not
be applicable.

Finally, a topology optimization algorithm is proposed in Bensi
et al. [3] to address the inefficiency of a converging BN structure as
shown in Fig. 1. The authors develop a discrete optimization pro-
gram to create a more efficient, chain-like BN model of the system
based on survival- or failure-path sequences. The proposed opti-
mization program, however, must consider the permutation of all
component indices and, therefore, may become intractably large
for large systems.

2.3. Conditional probability tables in construction of BN

The system size limitation arises due to the conditional prob-
ability tables (CPTs) that must be associated with each node in the
BN. In the BN terminology, the CPT of a child node provides the
probability mass function of the variable represented by that node
given each of the mutually exclusive combinations of the states of
the parent nodes. For an infrastructure system, the state of the
system is dependent on the states of each of its constituent
components, as shown in Fig. 1. The BN can include parent nodes
of the components, as indicated by the dashed arrows, re-
presenting common hazards, characteristics, or demands among
components. The focus of this study is on the system description
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part of the BN, as indicated in the dashed box, which models
system performance.

As shown in Fig. 1, the system node is a child node. Therefore, a
CPT must be defined to give the probability of each system state
for each combination of the states of the components. Let n denote
the number of components and assume each component has m
states. Each column of the CPT for each system state then has mn

elements. As an example, consider a binary system, where each
component as well as the system are in one of two possible states:
survival (denoted by 1) or failure (denoted by 0). For a binary
system comprised of =n 100 components, the CPT column for the
system survival state then consists of = ×2 1.3 10100 30 0 or 1 ele-
ments. This exponential increase in size poses a significant
memory storage challenge in constructing and analyzing the BN,
quickly rendering the model intractable.

Observe, however, that in general, the state of a system is de-
terministically known when the states of its constituent compo-
nents are known. Thus, for a binary system, the system CPT has a
special property: All entries in the table are either 0 or 1. The CPT
associated with the system node in the BN that defines the
probability of survival of the system given each distinct combi-
nation of the component states is shown in Table 1. Note that the
component states in the CPT need not be stored, as long as they
follow a predetermined pattern. The system CPT for a binary sys-
tem is, therefore, composed of a single column of 0 s and 1 s

The focus of this paper is on binary systems. This is particularly
useful for infrastructure systems, including power systems, where
components are in one of two possible states, e.g., on or off, sur-
vival or failure. For systems characterized by flow across the net-
work, e.g., water, gas, or transportation infrastructure, reliability
assessments can also be conducted using an initial binary analysis.
This is true if the component states are discretized, e.g., states 0, 1,
2, …, m, and the system performance is defined in a binary sense,
e.g., the system is in a survival state if the flow at a particular
consumption node is equal to or above a specified threshold, and it
is in a failure state if the flow is below the threshold. Of course in
this case a much larger combination of component states must be
considered, but the system column in the CPT remains a column of
0 s and 1 s. In this paper, we present algorithms developed to take
advantage of this property of the system CPT. Specifically, we de-
velop an algorithm for representing the system CPT in a com-
pressed form, and an algorithm to perform inference with com-
pressed matrices.

2.4. Minimum cut set identification for compression algorithm

One of the inputs into our compression algorithm is the set of
minimum cut sets (MCSs) of the system. An MCS is a minimum set
of components whose joint failure constitutes failure of the sys-
tem. While generation of the MCSs is an NP-hard problem, several
Table 1
Conditional probability table for a binary system.

C1 ⋯ −Cn 1 Cn sys

0 ⋯ 0 0 0
0 ⋯ 0 1 0
0 ⋯ 1 0 1
0 ⋯ 1 1 0
⋮ ⋮ ⋮ ⋮ ⋮

1 ⋯ 0 0 0
1 ⋯ 0 1 1
1 ⋯ 1 0 1
1 ⋯ 1 1 1
efficient methods have been developed for their identification.
These include enumerating MCSs one by one using recursive
methods [2], including the recursive decomposition algorithm
described in Li et al. [15]; a graphical approach using the con-
nection matrix proposed by Suh and Chang [28]; and methods
using a blocking mechanism to ensure every MCS is generated
only once [24]. Methods for enumerating cut sets for k-out-of-n
networks are proposed by Tan and Yeh [29,34], with the latter
proposing a depth-first-search algorithm to determine the MCSs in
a tree diagram. MCSs can also be generated directly from FTs, e.g.,
using the MOCUS (method for obtaining cut sets) algorithm
[10,22].
3. Compression algorithm

The goal of the compression algorithm is to represent the
system state column of length 2n in a form that reduces the
memory storage requirement. To do this, the proposed algorithm
integrates two classical compression techniques, run-length en-
coding and Lempel-Ziv encoding. Both are lossless techniques so
that no approximations are made in representing the system CPT.
The algorithm will need to process through the full length of the
data, however, in this case 2n combinations of component states.
From a computational standpoint, this can be prohibitive for large
n. The main objective of the compression algorithm is to address
the hard memory storage constraint in constructing BN models.
Heuristics can be used to enhance computational efficiency of the
algorithms.

3.1. Run-length encoding

In a set of data, a run is defined as consecutive bits of the same
value. In run-length encoding, runs are stored as a data value and
count [12]. For example, in compressing a sequence of white and
black pixels, respectively denoted as “W” and “B,” a sequence of 18
Ws is stored as the count 18 and the data value W. Thus, the
memory storage requirement is reduced from 18 elements to 2.
The number of bits required for storage of each element varies
depending on the storage format. Run-length encoding is well
suited for data with many repeated values. However, mixed values
are stored literally, which results in little gain for mixed data. For
example, alternating white and black pixels results in the com-
pressed dataset 1W1B1W1B⋯, which in fact doubles the memory
storage requirement compared to the uncompressed form WBWB
⋯. An example of run-length encoding is shown below:
ncompressed
dataset
WWWWWWWBWWWWWBBWWWWWWW
WWW
ompressed
dataset
7W1B5W2B10W
In this example, the original dataset comprised of 25 elements
is compressed to a dataset of 10 total elements. Obviously, the gain
achieved by employing run-length encoding to compress a dataset
depends on the number and length of runs in the dataset.

3.2. Lempel–Ziv encoding

The classical Lempel–Ziv algorithm [36] finds patterns (“phra-
ses”) in the dataset, constructs a dictionary of phrases, and encodes
based on repeated instances of phrases in the dictionary. The
major advantage of the algorithm lies in the ability to repeatedly
call the phrases in the dictionary, while having to store just one
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instance of each phrase in the dictionary. An example of the
Lempel–Ziv algorithm with the corresponding dictionary is shown
below:
U

P
F

ncompressed dataset
 WWBWBBWBWWBB

ompressed dataset
 ∅ W1B2B2W3
C

Dictionary:
hrase number
 1
 2
 3
 4

ull phrase
 W
 WB
 WBB
 WBW

ncoded as
 ∅W
 1B
 2B
 2W
E

In constructing the dictionary, we begin with the empty set ∅.
The dictionary is then dynamically constructed as we progress
through the data. Moving through the uncompressed dataset, bit
by bit, we read the input and find the longest string in the dic-
tionary that matches it. We read the phrase number as part of the
compressed output and add the bit that follows. If not present in
the dictionary, the phrase is added to the dictionary as a new entry
with an assigned number.

In the above dataset, our first bit is W, which we encode as the
empty set ∅ plus a W. We then encounter another W, which we
have seen before as phrase 1, and now append to that phrase the
bit that follows, B. Thus, we create phrase 2 as phrase 1 (W) plus a
B and add that to the dictionary. We then encounter another W;
however, this is not the longest string in the dictionary that
matches the current input. Instead, it is WB, which we have as
phrase 2. Therefore, we encode these bits as phrase 2 (WB) plus
the B that follows and add this to the dictionary as phrase 3. In a
similar way, we encode WBW as phrase 2 (WB) plus a W and add
to the dictionary as phrase 4. Finally, we encounter WBB, which
has already been encoded as phrase 3. Thus, the end result of the
compressed dataset is ∅W1B2B2W3.

The relatively short length of the above example dataset results
in limited savings in the compression (9 elements to be stored
instead of 12). However, as the size of the dataset and the number
of repeated phrases increases, the memory storage gain achieved
by the Lempel–Ziv algorithm also increases.

3.3. Proposed compression algorithm

The proposed algorithm integrates run-length and Lempel–Ziv
encoding to compress the system column of the CPT. As described
earlier, the system column of the CPT takes the values 0 or 1. A
consecutive sequence of 0 s is a “0 run,” and a consecutive se-
quence of 1 s is a “1 run.” If the next bit in the sequence is a value
different from the previous bit, e.g., a 1 following a sequence of 0 s,
then that indicates either the beginning of a new run or the be-
ginning of a phrase. If the bit subsequent to that last bit is the same
value, i.e., a 1 following the previous 1, then that indicates the
beginning of a 1 run. If the subsequent bit is a different value, i.e., a
0 following the previous 1, then that indicates the beginning of a
phrase. The phrase is now comprised of at least two elements, the
first value, i.e., the 1, and the differing second value, i.e., the 0. As
the sequence continues with bits of the second value, the length of
the phrase increases, until a bit of the first value appears, which
then indicates the end of the phrase. Therefore, each phrase is
constructed of two values: the first element of the phrase is one
value and it is followed by a sequence of the other value. The
dictionary for the proposed algorithm is comprised of these
phrases.

Fig. 2 shows the flowchart for the developed compression
algorithm, Algorithm A, for a binary system with n components
and with { }MCS denoting the set of minimum cut sets (MCSs) of
the system. The output of the compression algorithm is the com-
pressed system CPT column, cCPTsys, and the accompanying dic-
tionary of phrases, d0. Steps of the algorithm are described below.

For each row = …k 1, ,2n of the system CPT, the component
states …s s, , n1 are computed in terms of the row number based on
the specific pattern used in defining the table. The table is con-
structed with …C C, , n1 organized from left to right. Each row of the
CPT is one of the mutually exclusive combinations of component
states. The specific pattern used to organize these states is: C1 is in
state 0 for rows = … −k 1, ,2n 1 and in state 1 for rows

= + …−k 2 1, ,2n n1 ; C2 is in state 0 for rows = … −k 1, ,2n 2 and rows
+ … +− − −2 1, ,2 2n n n1 1 2 and in state 1 for rows = + …− −k 2 1, ,2n n2 1 and

rows + + …− −2 2 1, ,2n n n1 2 ; etc. This pattern continues through Cn,
which is therefore in states 0 and 1 in alternating rows, i.e., 0 in
odd rows and 1 in even rows. Utilizing this pattern in constructing
the CPT, we determine the state of component i, = …i n1, , , in row
k of the CPT according to the rule

=
∈

∈
( )

−

−

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

s

ceil
k

ceil
k

0 if
2

odd

1if
2

even
1

i

n i

n i

where ( )ceil x is the value of x rounded up to the nearest integer.
For example, for a system comprised of 20 components, the state

of C15 in row 450,000 is 0 because ( )=−ceil 14063450000

220 15 is odd. Using

the above rule, the data on component states in the CPT are re-
moved without any loss of information. For a system with multi-
state components, each component can have states … m0,1, , i.
Given a pattern of listing component states, one can devise a more
complicated formula that gives the states of all components for a
given row number of the CPT. One can then determine the state of
the system, 0 or 1, depending on whether the system flow is above
or below a specified threshold. So everything remains the same,
except that formula (1) is updated for multistate components.

For each row, the component states are checked against { }MCS
to determine the state of the system. If all of the components
comprising at least one MCS are in the fail state, then the system is
in the fail state; otherwise, the system is in the survival state. This
is an operation that is required for all rows of the CPT, and thus
must be performed 2n times. Heuristics can be used in the com-
ponent ordering to improve the efficiency of the MCS checking
process. The resulting value of the system state is then encoded in
compressed form as a run or a phrase.

Runs can be 0 runs or 1 runs, and as the number of consecutive
repeated values increases, the length of the run is increased. When
a phrase is encountered, it is checked against the contents of the
dictionary to determine if it exists or is a new one that must be
added to the dictionary. Each phrase in the dictionary is defined by
four variables: (1) the phrase number, p, (2) the first value in the
phrase, v1, (3) the second and subsequent values in the phrase, v2,
and (4) the length of the phrase Lp. Once the existing or new
phrase has been identified, the number of repeated instances of
the phrase in sequence, denoted np, is updated.

Each row of the compressed CPT is comprised of three values:
(1) an indicator variable that defines whether the row is the be-
ginning of a run or a phrase; (2) if a run, the value r of the run; if a
phrase, the phrase number p in the dictionary; and (3) if a run, the
length Lr of the run; if a phrase, the number np of repeated in-
stances of the phrase in sequence. Thus, a run is defined by the
values { }r Lrun, , r and a set of repeated phrases is defined by the

values { }p nphrase, , p . Once all rows of the system CPT have been
processed, the end result of the algorithm is the compressed CPT,
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cCPTsys, and the dictionary, d0. The size of this data is typically or-
ders of magnitude smaller than the size of the original CPT.
4. Inference algorithm

The objective in inference analysis in a BN is to update the
conditional probability distribution of a “query” node for “evi-
dence” (e.g., observed states) at other nodes. As mentioned earlier,
our interest in this paper is in exact inference methods. Two major
algorithms used for exact inference in BNs, the variable elimina-
tion (VE) algorithm and the junction tree (JT) algorithm, are briefly
described below. This is followed by description of the inference
algorithm developed by the authors to perform inference with the
compressed CPT. First we describe the algorithms for the case of
statistically independent states, then extend the developed algo-
rithm to the case of dependent components.

Algorithm A. Compression Algorithm.

4.1. Variable elimination algorithm

In the VE algorithm [8,21], inference is performed by elim-
inating all nodes, one by one, until one is left with the query node
– hence the name variable elimination. Elimination of each node
corresponds to summing of the joint distribution over all states of
the node, resulting in an intermediate factor λ that is used during
the next step of elimination. For example, for the system in Fig. 1,
suppose we are interested in the updated distribution of the state
of component C1, given a particular state sys of the system. As-
suming component states are independent, the VE calculation for
this query first computes

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∑ ∑

∑ ∑ ∑

∑ ∑ λ λ

= ⋯ ⋯

= ⋯

= ⋯ …=
( )

−

−

−

−

−

p C sys p C p C p C p C CPT

p C p C p C p C CPT

p C p C p C p C

,

2

C C
n n sys

C C
n

C
n sys

C C
n n

1 1 2 1

1 2 1

1 2 1 1 2

n

n n

n

2

2 1

2 1

where CPTsys is the CPT of the system node and λi is the inter-
mediate factor, in the form of a table, created after the elimination
of node Ci. The updated probability of interest is then obtained by
Fig. 2. Flowchart of com
dividing the joint probability by ( )p sys , obtained by further elim-
ination of C1 in ( )p C sys,1 , such that ( ) ( )| = ( )p C sys p C sys p sys, /1 1 . In the
VE calculation, nodes …C C, , n2 have been eliminated to arrive at the
query node, C1.

The intermediate factors λi need not be stored for subsequent
steps in the node elimination process. Therefore, there is lesser
demand on memory storage compared to other algorithms, such
as the JT. However, when considering multiple queries or different
evidence scenarios, need arises for repeated evaluation of some of
the λi's, resulting in increased computation time. Furthermore, the
order in which nodes in a network are eliminated results in dif-
ferent memory storage and computation time requirements. The
selection of an optimal elimination order, however, is an NP-hard
problem. Heuristics can be used in selecting the order of elim-
ination of the nodes to improve the efficiency of the algorithm.

4.2. Junction tree algorithm

The JT algorithm [26] improves on the VE algorithm by break-
ing down the network into subsets of the nodes called “cliques.”
The cliques comprise the junction tree. The CPTs associated with
cliques are called “potentials,” and the JT is initialized by com-
puting the potentials for all cliques. These potentials are stored
and reused in cases of multiple queries or evidence cases, making
the JT algorithm more efficient in computation time compared to
the VE. However, large memory is required to store the clique
potentials.

For a network structured as in Fig. 1, the junction tree is
comprised of only one clique of size +n 1. As the size of the system
increases, the potential over this clique grows exponentially in size
and becomes impossible to store. Furthermore, with only one
clique, there is no gain in using the JT versus the VE. Of course
there are alternative ways of formulating the BN model of the
system that are more favorable to the JT algorithm. Bensi et al. [3]
discuss these formulations and propose a topology optimization
method to reduce the clique sizes. Nevertheless, even with these
formulations, the JT algorithm quickly becomes infeasible with
increasing system size.

4.3. Proposed inference algorithm for independent components

The proposed inference algorithm is based on the VE method.
pression algorithm.
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Variables are eliminated one by one to arrive at the query node, with
the intermediate factor λi created after elimination of component Ci.
To reduce memory demand, λis are compressed using the same
compression algorithm as for CPTsys. Algorithm B described below
constructs compressed λis using the rules presented in Tables 2 and 3
and performs inference with the compressed CPTsys and λis without
decompressing or recompressing them. In particular, λi is constructed
directly from the compressed λ +i 1 without decompressing the latter.

Algorithm B. Inference algorithm for independent components.

Input: n, { }pf , cCPTsys, d0, Q , E

Output: |( )Q EPr
For ←i ndownto1, do
If ∈i Q

Reorder λ +i 1 such that component i is ordered to extreme left,
i.e., numbered 1.

λ ←+c i 1
reordered λ +i 1

reordered using compression algorithm.
Do not increment i.

Else for ← +j m1to i 1, do

Switch ( ){ } { } { }∈ ∈+ + +S L Lrun,phrase , odd,even , or odd,eveni
j

ri
j

pi
j

1 1 1
.

Construct λc i and di according to the case rules in Tables 2,3.
Increment i.

end

Let CPTsys denote the conventional uncompressed system CPT,
and cCPTsys the compressed one. Similarly, let λc i represent the
compressed version of the intermediate factor λi after elimination
Table 2

Rules for constructing λc i
j .

switch r pori
j

i
j

run ∈+S oddi
j

1 ∈+L oddri
j

1 +ri
j

1

∈+L evenri
j

1 +ri
j

1

∈+S eveni
j

1 ∈+L oddri
j

1 ( )× = ++
−r C RPr 1i

j
i

j
1

∈+L evenri
j

1 ( )× = ++
−r C RPr 1i

j
i

j
1

phrase ∈+S oddi
j

1 ∈+L oddpi
j

1 +pi
j

1

∈+L evenpi
j

1 +pi
j

1

∈+S eveni
j

1 ∈+L oddpi
j

1 +pi
j

1

∈+L evenpi
j

1 +pi
j

1

Table 3
Updating di for a new phrase starting in row j of λi .

switch v
i
j

1

phrase ∈+S oddi
j

1 ∈+L oddpi
j

1 ×
+

⎡
⎣⎢ v P

i
j

1 1

∈+L evenpi
j

1 ×
+

⎡
⎣⎢ v P

i
j

1 1

∈+S eveni
j

1 ∈+L oddpi
j

1 +− ⎡
⎣⎢R vj 1

1

∈+L evenpi
j

1 +− ⎡
⎣⎢R vj 1

1

of the ith component, with = …i n0, , , 1 being the order of
elimination. =i 0 indicates that no components have been elimi-
nated. Therefore, λ =CPTsys0 and λ =c 0 cCPTsys. Let mi indicate the
number of rows in λc i.

During the variable elimination process according to Eq. (2), the
values in the system column of CPTsys are first multiplied by the
state probabilities of component n to arrive at a column of values
representing λn. The next step involves multiplication of this col-
umn with the state probabilities of component −Cn 1 and so on.
These multiplications result in values in each column that, in
general, are different from 0 or 1, even in the binary case. However,
as each elimination step involves the multiplication of a specific
component failure or survival probability (or a finite set of com-
ponent state probabilities, when the component is multistate), the
values in λi remain finite and the intermediate factor can be
compressed. In fact, λc i is constructed row by row, without ever
constructing the uncompressed λi.

Similar to the rows of the compressed system CPT, each row j
of λc i, = …j m1, , i, is comprised of three values: (1) an indicator
variable that defines whether the row is the beginning of a run or
a phrase; (2) if a run, the value ri

j of the run; if a phrase, the phrase

number pi
j in the dictionary; and (3) if a run, the length Lr

j
i
of the

run; if a phrase, the number np
j
i
of repeated instances of the

phrase. Thus, row j of λc i is stored as either { }λ =c r Lrun, ,i
j

i
j

r i
j or

{ }λ =c p nphrase, ,i
j

i
j

p
j
i
, depending on whether it is the beginning of a

run or a phrase, respectively.
Recall that during compression of CPTsys, an accompanying

dictionary d0 is constructed, which defines the phrases present in
cCPTsys. Each phrase is constructed of two values: The first element
of the phrase is one of the values and it is followed by a sequence
of the other value. This is because if the first value repeats, then
L norri
j

pi
j Rj

( )−+L 1 /2i
j

1
× ( = )+r Pr C 0i

j
i1

+L /2i
j

1
0

1(also =+
+r ri

j
i
j1

1) 1 (also ( )= −+
+L L 1 /2ri

j
i
j1

1 ) 0

1 (also =+
+r ri

j
i
j1

1) 1(also ( )= −+
+L L 2 /2ri

j
i
j1

1 ) × ( = )+r Pr C 0i
j

i1

+npi
j

1 × ( = )
+

v Pr C 0
i
j

i2 1

+npi
j

1
0

+npi
j

1
0

+npi
j

1 × ( = )
+

v Pr C 0
i
j

i2 1

v
i
j

2 Lpi
j

( = ) + × ( = )
+

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥r C v Pr C0 1i i

j
i2 1 +

v
i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 3 /2 1i

j
1

( = ) + × ( = )
+

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥r C v Pr C0 1i i

j
i2 1 +

v
i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 2 /2 1i

j
1

× ( = )
+

⎤
⎦⎥Pr C 1

i
j

i1 +
v

i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 1 /2 1i

j
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× ( = )
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i
j
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v

i
j
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⎡
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1



Table 5
Updating di for a new phrase starting in row j of λc i .

switch v
i
j

1 v
i
j

2 Lpi
j

phrase ∈+S oddi
j

1 ∈+L oddpi
j

1 +
+ +

v v
i
j

i
j

1 1 2 1
×

+
v2

i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 3 /2 1i

j
1

∈+L evenpi
j

1 +
+ +

v v
i
j

i
j

1 1 2 1
×

+
v2

i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 2 /2 1i

j
1

∈+S eveni
j

1 ∈+L oddpi
j

1 +
+

−v R
i
j j

1 1
1 ×

+
v2

i
j

2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 1 /2 1i

j
1

∈+L evenpi
j

1 +
+

−v R
i
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1 1
1 ×
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v2
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2 1 ( )− ++
⎡
⎣⎢

⎤
⎦⎥L 2 /2 1i

j
1
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the sequence would be a run. The dictionary is updated as new
phrases are formed during the construction of λc i. Let di denote the
updated dictionary after construction of λc i. di is constructed row
by row. Each row of di defines a phrase, which is defined by four
variables: (1) the phrase number p, (2) the first value in the
phrase, v1, (3) the second and subsequent values in the phrase, v2,
and (4) the length of the phrase Lp. In the proposed inference
algorithm, we begin with cCPTsys and d0. We then eliminate the
components in the order …n, , 1. At each step, we construct λc i
from λ +c i 1 ( λc n from λ = )c cCPTsys0 and di from +di 1 (dn from )d0 based
on the algorithm described below for the case of binary compo-
nents. Note that once λc i and di have been constructed, λ +c i 1 and

+di 1 need not be retained and can be discarded.
Let { }pf be a vector of length n with elements = ( = )p Pr C 0f i i, ,

= …i n1, , , where pf i, is the failure probability of component i. We

define two quantities: Si
j as the run or phrase start row number in

λi defined by row j of λc i, and Rj the remainder after processing
row j of λc i (defined in Table 2). Because the remainder is reset
after elimination of node i, it does not carry subscript i. Also, let Q
define the set of query nodes and E denote the set of nodes for
which evidence is entered. The algorithm for constructing λc i then
follows as described in Algorithm B.

Tables 2 and 3 show the rules for constructing λc i and di, re-
spectively. These are rules derived based on the mathematical
operations required during variable elimination. Each row in
Tables 2 and 3 represents a “switch” case. Given the values in each
row of λ +c i 1, the algorithm switches to the appropriate row of the
rule table to calculate the values for the next factor λc i. For ex-
ample, if the row in the λ +c i 1 indicates a phrase that begins on an
odd-numbered row in λ +i 1 with an even phrase length, the rules in
the sixth row of Table 2 and the second row of Table 3 would be
used to construct λc i and di.

Switch cases are shown in the left three columns of
Tables 2 and 3. In Table 2 for λc i, the fourth and fifth columns list
the run or phrase values, and the last column is an update of the
remainder for row j. The case for a run with ∈+S eveni

j
1 is special. It

involves the remainder from the preceding row of λc i, as described
below. The last column of the table lists the remainder value for
the jth row of λc i. This is updated for possible use for the next row
of λc i or di. In Table 3 for di, the last three columns list the first and
second values of the new phrase and its length. When ∈+S eveni

j
1 ,

the first phrase value involves the remainder corresponding to the
preceding row of λc i.

When a run starts on an even row number in λi, the first value
Table 4

Rules for constructing λc i
j for dependent components.

switch r pori
j

i
j

run ∈+S oddi
j

1 ∈+L oddri
j

1 × +r2 i
j

1

∈+L evenri
j

1 × +r2 i
j

1

∈+S eveni
j

1 ∈+L oddri
j

1 ++
−r Ri

j j
1

∈+L evenri
j

1 ++
−r Ri

j j
1

phrase ∈+S oddi
j

1 ∈+L oddpi
j

1 +pi
j

1

∈+L evenpi
j

1 +pi
j

1

∈+S eveni
j

1 ∈+L oddpi
j

1 +pi
j

1

∈+L evenpi
j

1 +pi
j

1

of the run is multiplied by ( )=CPr 1i , while subsequent pairs of

values in the run are multiplied by ( )=CPr 0i and ( )=CPr 1i , re-
spectively. This first value must be taken into account as an ad-
ditional run of unit length. Thus, for this special case, we con-
currently construct rows j and +j 1 of λc i. For the first run,

( )= × = ++
−r r C RPr 1i

j
i
j

i
j

1
1, where −Rj 1 is the remainder from row −j 1

of λc i and =L 1r
j
i

. For the second run, =+
+r ri

j
i
j1

1 and ( )= −+
+L L 1 /2r

j
i
j1

1i
.

Because one row of λ +c i 1 now corresponds to two rows in λc i,
subsequent row numbers in λc i are incremented by a 1, or if there
are multiple instances x of this special case, the row numbers are
incremented by x.

With the rules described in Tables 2 and 3, the proposed in-
ference algorithm for independent components is able to handle
both CPTsys and λis in compressed form without decompressing or
recompressing them. This enables significant savings in memory
storage throughout the inference process.
4.4. Algorithm for dependent components

The inference algorithm presented in the previous section as-
sumes independence between the states of the components of the
system. In this section, we discuss the treatment of dependent
component states, i.e., components with common parent nodes
representing, for example, common capacities or demands.

Consideration of dependent component states requires mod-
ifications to the inference algorithm and the rules for constructing
λc i and di presented in the previous section. The algorithm de-
veloped and rules derived for the dependent case are given as
Algorithm C and Tables 4 and 5, respectively.
L norri
j

pi
j Rj

( )−+L 1 /2i
j

1 +ri
j

1

+L /2i
j

1
0

1(also = ×+
+r r2i

j
i
j1

1) 1 (also ( )= −+
+L L 1 /2ri

j
i
j1

1 ) 0

1 (also = ×+
+r r2i

j
i
j1

1) 1 (also ( )= −+
+L L 2 /2ri

j
i
j1

1 ) +ri
j

1

+npi
j

1 +
v

i
j

2 1

+npi
j

1
0

+npi
j

1
0

+npi
j

1 +
v

i
j

2 1
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Algorithm C. Inference Algorithm for Dependent Components.

Input: { }n p cCPT d Q E, , , , ,f sys 0

Output: ( | )Pr Q E
For ←i n1to , do

If ∈^C Ci

Calculate the marginalized component failure probability
using Eq. (3).

end
For ←j n1to P , do

If ∈^E Cj

Update probability distribution of Pj using Eq. (4).
end
For ←j n down to1P , do

If =j nP

Eliminate Pj according to Eq. (5).
λ λ←c P Pi i using compression algorithm.

Else
Eliminate Pj according to Eq. (6).

λ λ←c P Pi i using compression algorithm.
end
For ←i ndown to1, do

If ∈^C Ci

If = (^)C Cmaxi

Eliminate Ci according to Eq. (7).
λ λ←c i i using compression algorithm.

Else
Construct λc i and di according to the case rules in Table-
s 4 and 5.

Else
Eliminate component using standard VE inference algorithm.

end

Let …P P, , n1 P denote the parent nodes, where nP denotes the total

number of parents of the n components, …C C, , n1 . Also let { }pf

denote prior probabilities of failure of the components, including
conditional failure probabilities of components with parents. Note
that this is a set of tables, as the conditional component failure
probabilities must be defined for all possible combinations of the
parent states. To perform inference on query Q given evidence E
for a system with dependent components, we employ the fol-
lowing algorithm.

Let ni denote the number of parents of component Ci and define
…P P, ,i i n,1 , i as the subset of nodes that are parents to Ci. First, we

obtain the marginalized prior probability of failure of the com-
ponent by summing over all states of the parent nodes:

( ) ( )( ) ( )∑ ∑= ⋯ | … ⋯
( )

p C p C P P p P p P, ,
3

i
P P

i i i n i i n,1 , ,1 ,

i i ni

i i

,1 ,

If the evidence is on a component with parent nodes, we up-
date the probability distributions of the parent nodes using Bayes’
rule:

( ) ( ) ( )
( )| =
|

( )
p P C

p C P p P

p C 4
i

i

i

During elimination of component nodes, if a component does
not have any parents, variable elimination is performed according
to Algorithm B. If the component has parents, we first eliminate
the parents. Let νj denote the number of components that share a
common parent, Pj, so that { }^ = … νC C C, ,j j j,1 , j is the subset of com-

ponents that are the children of Pj. The parent nodes are elimi-
nated in order …P P, ,n 1P with the parent node Pj eliminated by
summing over all its states according to the total probability rule.
The elimination of the first parent in the elimination order, PnP ,
creates the intermediate factor λPnP

,

( )
( )

( )

∑

( )

( )λ = | … ⋯

| … ( )ν ν

( )

( )ν ν

p C P P

p C P P p P

, ,

, 5

P
P

n n n n

n n n n n

,1 ,1 ,1 ,1 ,

, , ,1 ,

nP
nP

P P P nP

P nP P nP P nP nP nP P

,1

, ,

This factor, λPnP
, is a function of all of the children nodes of PnP ,

as well as of all the parents of the children, i.e.,

( )λ … νC C P, , ,P n n k,1 ,nP P P nP
where { ( ) ( )= …⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦k n n n,1 ,1 , , ,1 , ,P P n ,1P

}( ) ( )ν ν… … ν
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦n n n, , ,1 , , , ,P n P n n ,P P P nP

. ( )P n ,1 ,1P indicates the first

parent of the first child of parent nP , ( )P n n,1 ,P nP,1 indicates the nth

parent of the first child of parent nP , etc.
Subsequent elimination of a parent node Pj involves the con-

ditional probability terms of the children of Pj, … νC C, ,j j,1 , j; the in-
termediate factor from the previous elimination step, λ +Pj 1; and the
marginal probability term of the node Pj. If a child of Pj, Cj i, , is also a
child of a parent …+P P, ,j n1 P , then the conditional probability term

( )( ) ( )| … …p C P P P, , ,j i j i j j i n, , ,1 , , j i, has already been accounted for in a

previous elimination step, and does not enter into this elimination
calculation. That is, only if { }{ } ( ) ( )… ∉ …+P P P P, , , ,j n j i j i n1 , ,1 , ,P j i, is the

term ( )( ) ( )| … …p C P P P, , ,j i j i j j i n, , ,1 , , j i, taken into account in the elim-

ination of Pj. In addition, λ +Pj 1 is only taken into account if it is a
function of the node being eliminated Pj, i.e.,

{
}

( )
( )

( ) ( ) ν

ν

∈ = + … + … + …

+ ν

+ +

+ + +

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

j k j j n j

j n

1,1 ,1 , , 1,1 , , , 1, ,1 , ,

1, ,

j j

j j

1,1 1

1 1, j 1

for
( )λ … ν+ ++ +C C P, , ,P j j k1,1 1,j j1 1 . Otherwise, the intermediate factor λ +Pj 1

is moved to the next elimination step. Therefore, elimination of a
parent node Pj is performed according to

( ) ( )∑ ∏λ λ= | … …
( )

ν

=
( ) ( ) +⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

p C P P P p P, , , ,
6

P
P i

j i j i j j i n P j
1

, , ,1 , ,j

j

j

j i j, 1

for Cj i, such that { }{ } ( ) ( )… ∉ …+P P P P, , , ,j n j i j i n1 , ,1 , ,P j i, , and ∈j k for

( )λ … ν+ ++ +C C P, , ,P j j k1,1 1,j j1 1 . In order to preserve the memory storage

savings throughout the inference process, these intermediate
factors are stored in compressed form using the compression al-
gorithm described earlier.

Next, the components are eliminated in the order …C C, ,n 1. The
final intermediate factor created after the elimination of the parent

nodes, λP1, is a function of the components with parents, Ĉ . This
factor must be taken into account when eliminating the compo-
nents, and will occur at the first instance of eliminating a com-
ponent with parents. Since the components are eliminated in
reverse.

order, this is the component with the highest index in Ĉ . If

= (^)C Cmaxi , the elimination of Ci is performed according to

∑λ λ λ=
( )

+
7

i
C

P i 1

i

1

Note that if =i n, then λ +i 1, the intermediate factor from the
previous elimination step, is equivalent to λP1, and should not be
counted twice. Therefore, in that case, Equation (7) becomes
λ λ= ∑i C Pi 1. Once the parent intermediate factor has been taken into

account, the elimination of the remaining components with



I. Tien, A. Der Kiureghian / Reliability Engineering and System Safety 156 (2016) 134–147142
parents only requires a summing over the states of Ci, i.e.,
λ λ= ∑ +i C i 1i

.
Rules for constructing λc i as well as the accompanying dic-

tionary di are shown in Tables 4 and 5, respectively. Similar to the
inference algorithm described previously, these rules are devel-
oped according to switch cases: run or phrase; the run or phrase
start-row number +Si

j
1 in λ +i 1 defined in row j of λ +c i 1 being odd or

even; and the length of the run or phrase, +Lr
j
i 1

or
+

Lp
j
i 1

, being odd

or even. In addition, as before, the case of a run with ∈+S eveni
j

1 is
special and one row of λ +c i 1 corresponds to two rows in λc i, with
the values as indicated in Table 4. The variable elimination of all
components continues until the query components Q are reached.
The full algorithm to perform inference on a system with depen-
dent components is as given in Algorithm C.
Table 6
Compressed system CPT, cCPTsys , for the example system.

run or phrase r por L norr p

run 0 31
phrase 1 56
run 1 1

Table 8

Table 7
Dictionary, d0, for the example system.

p v1 v2 Lp

1 1 0 4
5. Test example

To illustrate the proposed compression algorithm, we apply it
to the example system shown in Fig. 3, which is adopted from [3].
The system consists of a parallel subsystem ( )C C C, ,1 2 3 and series
subsystems ( )C C C, ,4 5 6 and ( )C C,7 8 . Component states are assumed
to be statistically independent. For this system, the set of MCSs is

( ) ( ) ( ) ( ){ }={ ( ) }MCS C C C C C C C C C C C C C C, , , , , , , , , , , , ,1 2 3 4 1 2 3 5 1 2 3 6 7 8 .
The full system CPT is as shown in Table 1 for =n 8. The first

8 columns give the states of components …C C, ,1 8, constructed ac-
cording to the pattern described in Section 3.2. The right-most
column gives the state of the system given the states of the
components in that row. Because the system is comprised of
8 components, the system CPT consists of =2 2568 rows.

5.1. Application of compression algorithm

We proceed with implementing Algorithm A to compress the
system CPT of the example system In row =k 1,

{ }{ … }= …s s, , 0, , 01 8 . As all components in the system are in the
failed state, clearly the system is also in the failed state. More
rigorously, checking against { }MCS , we see that all components in
the first MCS, ( )C C C C, , ,1 2 3 4 , have failed. Therefore, =sys 0. Note
that once we find that all components in a given MCS are in the
failed state, we need not check the component states against the
remaining MCSs as the failure of any one MCS indicates failure of
the system.

As we continue through the rows = …k 2, , 31, we find the
system to be in the failed state, until we reach row =k 32.
Therefore, the compressed CPT begins with a 0 run of length 31. At

=k 32, { }{ … }=s s, , 0,0,0,1,1,1,1,11 8 . Checking against { }MCS , we see
that none of the MCSs have failed. In fact, the path from source to
sink connects through C C C C C, , , ,4 5 6 7 8. Thus, =sys 1, and we have
reached the end of the initial 0 run. Looking at =k 33,

{ }{ … }=s s, , 0,0,1,0,0,0,0,01 8 . We see that the component in the
fourth MCS ( )C7 has failed. Therefore, =sys 0 and we have a phrase
C1 

C2 

C3 

C4 C5 C6 

C7 C8 source sink 

Fig. 3. Example system.
beginning at row =k 32. Had the value in row =k 33 been =sys 1,
we would have had a 1 run.

At this point, we have not yet encountered any phrases and our
dictionary is empty. Therefore, this is the beginning of a
new phrase. For =k 34 and =k 35, =sys 0. At =k 36,

{ }{ … }=s s, , 0,0,1,0,0,0,1,11 8 and =sys 1, indicating the end of the
phrase. The full phrase, therefore, is { }1,0,0,0 for = …k 32, , 35,
which is stored in the dictionary as { }1,1,0,4 . These four values
indicate that the phrase number is =p 1, the first value in the
phrase is =v 11 , the second and subsequent values in the phrase are

=v 02 , and the length of the phrase is =L 4p . Note that in the binary
case, v1 and v2 are complements, so knowing one value enables us
to know the other. However, while it is not necessary to store both
values in the initial construction of the compressed system CPT, in
the subsequent process for inference, v1 and v2 can take values
different from 0 and 1 and are no longer guaranteed to be com-
plements. Therefore, during inference, we must store both v1 and v2.

After determining =sys 1 for =k 36, we continue and find that
for = …k 37, , 39 the system state is =sys 0 and for =k 40 the
system state =sys 1; thus we again encounter the phrase

{ }=sys 1,0,0,0 . This is now an existing phrase that we call from the
dictionary. Therefore, in the compressed system CPT, we reference
phrase =p 1 and increase the number of instances of this phrase
by 1. We continue through the remaining rows = … =k 40, ,2 256n .
Once we have processed all the rows of the system CPT, the end
result for the compressed CPT and the dictionary are as given in
Tables 7 and 8, respectively.

Tables 7 and 8 indicate that the total number of elements to be
stored for the compressed system CPT is 9 and for the dictionary is
4 for a total of 13 elements. We can verify that the number of rows
represented in the compressed CPT equals the number of rows of
the full CPT: We start with a run of length 31, have 56 instances of
a phrase of length 4, and end with a run of length 1. This gives

+ × + =31 56 4 1 256, which equals the number of rows of the
Uncompressed intermediate factor λ8 after elimination of C8 in the example
system.

C1 … C6 C7 λ8

0 … 0 0 0
0 … 0 1 0
0 … 1 0 0
0 … 1 1 0
… … … …

1 … 0 0 0
1 … 0 1 0.99
1 … 1 0 0
1 … 1 1 0.99



Table 9
Compressed intermediate factor λc 8 constructed after elimination of C8 in the ex-
ample system.

run or phrase r por L norr p

Run 0 15
Phrase 1 56
Run 0.99 1

Table 10
Dictionary d8 constructed after elimination of C8 in the example system.

p v1 v2 Lp

1 0.99 0 2

Table 11
Compressed intermediate factor of parent λc H for example system.

run or phrase r por L norr p

run 0.0713 1
run 0.1809 2
phrase 1 1
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original CPT. Thus, the total number of elements to be stored has
been reduced from 256 to 13. Note that the compression is
lossless.

The pattern of 0 s and 1 s in the system CPT column is governed
by the system topology. Therefore, the amount of compression
achieved by Algorithm A varies from system to system. The least
favorable scenario is when the sequence of 0 s and 1 s forms single
instances of short phrases, as in { …}0,0,1,0,1,0,0,1,0,1,0,0,1,0,1 ,
such that each appearance of a phrase requires another entry in
the compressed matrix. However, simple modifications of the
proposed algorithm can be used to achieve improved performance
across topologies. For the above example, a 512-length sequence of
this nature would require 615 elements in the compressed CPT, as
well as 8 elements in the dictionary. However, by combining the
two phrases { }1,0 and { }1,0,0 into a single repeated phrase
{ }1,0,1,0,0 the compressed CPT will only have 6 elements. One way
to automate this process of combining phrases is by running the
compression algorithm through the first-pass compressed data a
second time. This time, no runs will be identified. However, the
algorithm will identify 102 repetitions of the new phrase
{ }1,0,1,0,0 , which is created by a concatenation of the original { }1,0
and { }1,0,0 phrases.

5.2. Application of inference algorithm

We now illustrate the proposed inference algorithm for the
example system. We define the prior probabilities of failure as
0.2 for the components in parallel and 0.01 for the components in
series so that { } { }=p 0.2,0.2,0.2,0.01,0.01,0.01,0.01,0.01f . We begin
with the compressed system CPT in Table 6 and the accompanying
initial dictionary in Table 7. Suppose we are interested in the
backward inference problem of obtaining the posterior probability
distribution of C1 given that the system has failed. The order of
elimination of components is …8, , 2.

In the first step, we eliminate C8. For reference, the un-
compressed intermediate factor λ8 created after this elimination is
shown in Table 8. To construct the compressed factor λc 8 directly
from cCPTsys, we proceed as follows: cCPTsys consists of =m 3sys rows.
Looking at row =j 1, we see that it is a run; we are starting in row
1, so ∈S oddsys

1 ; the length of the run is 31, so ∈L oddr
1
sys . Therefore, to

construct the first row of λ8, we use the rules in the first row of
Table 2: = =r r 0sys8

1 1 , ( )= − = ( − ) =L L 1 /2 31 1 /2 15r sys
1 1
8 , and we have

the remainder ( )= × = =R r CPr 0 0sys
1 1

8 .
Moving to row =j 2, we have a phrase that starts in row 32

with a length of 4. Therefore, we use the last row of Table 2 to
construct the second row of λc 8: = =p p 1sys8

2 2 , = =n n 56p p
2 2

sys8
, and we

have a remainder ( )= × = =R v CPr 0 02
2
2

8sys . Because we are now
dealing with phrases, we also need to update our dictionary d8
with this new phrase starting in row =j 2 of λc 8. Given the even
starting row number and even phrase length, we again use the last
row, now in Table 3, to update d8: = + × ( = )⎡⎣ ⎤⎦v R v Pr C 11

2 1
1
2

8sys8

= + × =⎡⎣ ⎤⎦0 1 0.99 0.99 , = =v v 02
2

2
2
sys8

and ( )= − + =⎡⎣ ⎤⎦L L 2 /2 1 2p sys
2 2

8
.

We see that run values r and phrase values v1 and v2 can be
different from 0 or 1, even in the case of a binary system. However,
the intermediate factors λi can still be compressed because the
calculations for each row only involve the failure probability of one
component so that the number of values that the runs and phrases
take on is finite.

Finally, moving to row =j 3, we have a run that starts in row
256 with a length of 1. Therefore, we use the third row of Table 2
to construct the last row of λc 8: ( ) ( )= × = + = × +r r C RPr 1 1 0.99sys8

3 3
8

2

=0 0.99 , and =L 1r
3
8 . In this case, because the run is of length 1, we

only have a value for the first run, and there is no second run that
needs to be taken into account for the special case of ∈S evensys
3 .

The end result is the constructed λc 8 and d8, as shown in Table-
s 9 and 10, respectively.

We continue the elimination process until we have eliminated
components …C C, ,2 8 and arrive at the query node of interest, C1.
Our original inference question was to obtain the posterior prob-
ability distribution of C1 given an observation of system failure.
From the VE process, we obtain the joint probability ( )p C sys,1 . To
arrive at the posterior probability, we also need ( )p sys . We obtain

( )= =p sys 0 0.0201 by further eliminating C1 and then compute
the final result: ( )| = = ( = ) ( = ) = [p C sys p C sys p sys0 , 0 / 0 0.20931 1

]0.7907 for C1 being in the failure or survival state, respectively.
Given the observation that the system has failed, the probability of
failure of C1 has been updated from a prior failure probability of
0.2 to a posterior failure probability of 0.2093.

Comparing the uncompressed intermediate factor λ8 given in
Table 8 with the compressed λc 8 and accompanying dictionary d8

given in Tables 10 and 11, respectively, we see that the memory
storage requirement has been reduced from =2 1287 elements to a
total of 13 elements, 9 for λc 8 and 4 for d8. Similar reductions in
memory storage are achieved at each step of the elimination
process for inference. We can again verify that the number of rows
represented in λc 8 corresponds with the number of rows of λ8: In
λc 8, we have a run of length 15, 56 instances of a phrase of
length 2, and end with a run of length 1. This equals

+ × + =15 56 2 1 128, which equals the number of rows in λ8. The
compression is lossless and we again emphasize that we do not
need to decompress cCPTsys or any of the compressed intermediate
factors λc i to conduct the inference.

5.2.1. Application of inference algorithm for dependent components
For an illustration of the treatment of dependent component

states, we add a parent node H representing a common hazard on
components { }C C C, ,1 2 3 of the system, see Fig. 4.

The probabilities of failure of the parallel components are now
dependent on the occurrence of the hazard, where =H 0 and

=H 1 indicate non-occurrence and occurrence of the hazard, re-
spectively. The BN is initialized such that without the hazard oc-
curring, the failure probability of each component is as before, 0.2.
However, if the hazard occurs, the failure probability of each



C1 C2 C8 

sys

. . . 

P 

C3 

H 

Fig. 4. BN of example system with dependent components.

Table 12
Dictionary dH for intermediate factor of parent for example system.

p v1 v2 Lp

1 0.5669 0 5

Table 13
Compressed intermediate factor λc 3 after elimination of C3 in the example system
with dependent component states.

run or phrase r por L norr p

run 0.2451 1
phrase 1 1

Table 14
Dictionary d3 after elimination of C3 in the example system with dependent
component states.

p v1 v2 Lp

1 0.7329 0 3

Table 15
Compressed intermediate factor λc 2 after elimination of C2 in the example system
with dependent component states.

run or phrase r por L norr p

phrase 1 1

Table 16
Dictionary d2 after elimination of C2 in the example system with dependent
component states.

p v1 v2 Lp

1 0.9780 0 2
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component increases to 0.4. Assume the probability of the hazard
occurring is ( )= =HPr 1 0.15. Now, suppose we have evidence that
component 1 has failed. We use the algorithm for dependent
components presented in Section 4.3 to perform inference on the
state of the system.

The first step in the algorithm is to calculate the marginalized
prior probabilities of failure of the components with parent
nodes. For example, for C1, we sum over the states of H to obtain

( ) ( ) ( )|= = ∑ =p C p C H p H0 0.23P1 1 . Next, given the evidence, we update
the probability distribution of H using Bayes’ rule to obtain the up-
dated hazard probability ( ) ( ) ( ) ( )= = = = =p HC p C H p H p C0 0 / 01 1 1 0.2609.

Next, we eliminate the parent node and create the compressed
intermediate factor. In our example, in the first row of λH ,

{ }{ }=s s s, , 0,0,01 2 3 . Thus, the value in the first row of λH is calcu-
lated as ( ) ( ) ( ) ( )| | |∑ = = = =p C H p C H p C H p H0 0 0 0.0713H 1 2 3 . We con-
tinue through the remaining rows and utilize the compression
algorithm to result in the compressed intermediate factor λc H and
the accompanying dictionary dH as shown in Tables 11,12,
respectively.

The above algorithm is particularly efficient in creating the
compressed intermediate factors according to Equation (5) when
many components have similar dependencies on the parents, i.e.,
have identical conditional probabilities. Because the values in the
intermediate factors of the parents are calculated from the state
probabilities of the children components, under this condition the
intermediate factors assume a limited number of values. For ex-
ample, if there are ten components numbered …1, , 10 that are
children of a common parent, if the conditional probabilities are
identical, then values in λH for the case where C1 and C2 are in the
failed state are the same as those when C1 and C3 are failed, C1 and C4

are failed, C2 and C3 are failed, etc. This condition leads to an efficient
construction of λc H . Additionally, if the components have many
different parents, the algorithm is also tractable in that the number
of terms in the expression for (and thus the size of) the inter-
mediate factors for the parents is small. The first scenario describes
a situationwhere many components share similar dependencies on,
e.g., a common hazard. The second case describes the more detailed
modeling of specific components, e.g., small groups of components
having specialized dependencies on particular parent nodes.

After compressing the intermediate factor of the parent nodes,
we begin the variable elimination process for inference. We begin
with the compressed system CPT as shown in Tables 7 and 8. First,
components …C C, ,8 4 are eliminated using the standard VE algo-

rithm. Since ∈^C C3 , its parent intermediate factor λH must be ac-
counted for. Thus, C3 is eliminated by summing over the product of
the intermediate factor from the previous step, λ4, and the inter-
mediate factor of the parent λH , i.e., λ λ λ= ∑C H3 43

. This results in the
compressed intermediate factor and dictionary shown in Tables 13
and 14, respectively.
In the next step, we eliminate C2, which is also an element of Ĉ .
However, its parent intermediate factor λP has already been ac-
counted for. Thus, we construct intermediate factor λ2 using the case
rules in Tables 4 and 5. Working from row 1 of λc 3, we have a run
with ∈S odd3

1 and ∈L oddr
1
3

. Therefore, to construct the first row of the

compressed factor λc 2
1, we use the rules in the first row of Table 4:

= × = × =r r2 2 0.2451 0.49022
1

3
1 , ( )= − = ( − ) =L L 1 /2 1 1 /2 0r

1
3
1

2 , and

we have a remainder = =R r 0.24511
3
1 . Note that as the length of this

run is 0, the value of this run is discarded. The remainder, however,
remains and is brought forward to the next row.

In row 2, we have a phrase with ∈S even3
2 and ∈L oddr

2
3

. Thus, to
construct row 2 of the compressed intermediate factor λc 2, we use
the rules in the seventh row of Table 4: = =p p 12

2
3
2 , = =n n 1p p

2 2
2 3

, and no
remainder; and the third row of Table 5 to construct the dictionary:

= + = + =v v R 0.7329 0.2451 0.97801
2

1
2 1

2 3 , = × = × =v v2 2 0 02
2

2
2

2 3 , and

( )= − + =⎡⎣ ⎤⎦L L 1 /2 1 2p
2

3
2

2
. The end results for λc 2 and d2 are shown in

Tables 15 and 16, respectively.
We continue the elimination process to arrive at a posterior

system failure probability of ( )= =p sys 0 0.0220 given the evidence
that component 1 has failed.

5.3. Expanded example systems

To demonstrate the performance of the proposed algorithms in
modeling systems of increasing size, we modify the example system
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in Fig. 3 by adding components either to the series or the parallel
subsystem so that the total number of components in the system is
n. The resulting test systems are shown in Figs. 5 and 6, respec-
tively. The MCSs of these systems are { ( ) (…C C C C C C C, , , , , , , ,1 2 3 6 1 2 3

}( ) ( ))C C C, ,n 4 5 , and ( ) ( ) ({ … … …− − − − −C C C C C C C C, , , , , , , , , , ,n n n n n1 5 4 1 5 3 1 5

( ) ( )) }− −C C C, ,n n n2 1 , respectively. The BNs for the test systems are
initialized with prior probabilities of failure of 0.2 for components
in the parallel subsystem and 0.01 for components in the series
subsystems. Component states are assumed to be statistically in-
dependent. We are interested in updating the probabilities of failure
of the system and component 1, given evidence as described below.

The resulting analyses of these two expanded systems de-
monstrates how the proposed algorithms perform compared to
existing algorithms for systems of increasing size. We note that the
above systems can be more efficiently represented as a system of
three super-components, each representing a series or parallel
subsystem, as described in [20] and further explored in [9,25,3] for
system reliability problems. However, here we disregard this ad-
vantage in order to investigate the system size effect.

5.3.1. Performance: inference
Fig. 7 shows results for updated probabilities of system failure,

given the evidence that component 1 has failed, i.e.,
( )= = )sys CPr 0 0

1
. Fig. 8 shows results for the updated probabilities

of failure of component 1, given that the system has failed, i.e.,
( )= = )C sysPr 0 01 . The updated probabilities are plotted against the

total number of components in the system, n.
In these figures, “increase series” indicates the results for the

system in Fig. 5 and “increase parallel” indicates the results for the
system in Fig. 6.

In Fig. 7, we see that the updated probability that the system
fails increases as the number of components in the series sub-
system increases, as there are more MCSs that can fail and lead to
system failure. In contrast, as the number of components in the
parallel subsystem increases, the updated failure probability of the
system initially decreases and eventually becomes essentially
constant for systems of 11 or more components. This is because
the probability of failure of MCSs involving the increasing number
of parallel components diminishes and the system failure
C1 

C2 

C3 

C6 Cn

C4 C5 source sink 

Fig. 5. Example test system: expanded with increased number of components in
series subsystem.

C1 

Cn-5 

Cn-4 Cn-3 Cn-2 

Cn-1 Cnsource sink 

Fig. 6. Example test system: expanded with increased number of components in
parallel subsystem.

Fig. 8. Updated probabilities of component failure given system failure as a func-
tion of increasing system size.
probability becomes dominated by the failure probabilities of the
two single-component MCSs { }−Cn 1 and { }Cn .

In Fig. 8, we see that as the number of components in the series
subsystem increases, the conditional probability that C1 has failed
given that the system has failed increases. With an increased
number of components in the series subsystem, there are an in-
creased number of MCSs that involve component 1, i.e.,
{ }C C C C, , , i1 2 3 , = …i n6, , . Since failure of any of these MCSs leads
to system failure, an increase in the system size gives a higher
probability that failure of component C1 was “necessary” for the
system to fail. In contrast, as the number of components in the
parallel subsystem increases, the updated probability of failure of
component C1given system failure again converges for a system of
11 components or more. In this case, the evidence on the system
state is not informative for the component, and the updated
probability of failure converges to the prior probability of failure of
component C1. This is because the parallel system being highly
reliable, it is unlikely to have contributed to the system failure.
Figs. 7 and 8 show that the proposed algorithms successfully
perform inference with evidence on both component and system
states.
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5.3.2. Performance: memory storage
We examine the performance of the new algorithms compared

to an existing method on two measures: memory storage and
computation time. For the existing method, we use the JT algo-
rithm as implemented in the Bayes Net Toolbox by [18]. The al-
gorithms are run in MATLAB v7.10 on a 32 Gb RAM computer with
2.2 GHz Intel Core i7 processor.

Fig. 9 shows the maximum number of values that must be
stored in memory during the running of the algorithms, which is
used as a proxy to assess the memory storage requirements of
each algorithm. For a given n, the two example systems produce
identical results. The values for the “New” algorithm are the
maximum number of elements stored in cCPT or λc i and their
associated dictionaries. The values for the “Existing” algorithm
indicate the maximum number of elements stored using the JT and
the naïve BN formulation shown in Fig. 1. The symbol “X” marks
the maximum size of the system after which the existing algo-
rithm can no longer be used because the memory demand exceeds
the available memory storage capacity.

Fig. 9 shows that the proposed algorithm achieves significant
gains in memory storage demand compared to the existing algo-
rithm. For the existing JT algorithm, the memory storage demand,
as measured by the number of values that must be stored, in-
creases exponentially with the number of components in the
system. In fact, on our computer with 32 Gb RAM memory, the
algorithm runs out of memory for a system comprised of 24
components. For the proposed algorithm, the memory storage
demand not only does not increase exponentially, but remains
constant, even as the number of components in the system in-
creases. The total number of values stored is 15, compared to +2n 1

for the size of the full system CPT. For the example system, this
number remains constant at 15 total elements stored for ≥n 24.

5.3.3. Performance: computational efficiency
Fig. 10 shows the computation times required to run the two

algorithms as a function of increasing system size. Computation
times are broken into the various functions for each algorithm. The
bars labeled “New - compression” indicate the time required to
compress the system CPT using the proposed compression algo-
rithm. The next two bars indicate the times required to perform
inference on the system given { = }C 01 and on component C1 given
{ = }sys 0 using the proposed algorithm. The bars labeled “Existing -
initialization” indicate the times required to initialize the BN using
the JT algorithm. The next two bars indicate the times required to
perform inference on the system given { = }C 01 and inference on
component C1 given { = }sys 0 using JT. The computation times are
recorded for systems of increasing size, as indicated by the total
Fig. 9. Memory storage requirements for the proposed new algorithm compared to
existing method as a function of system size.
number of components in the system. The results in Fig. 10 are for
the system in Fig. 5.

Examining Figs. 9 and 10 together, we see the classic storage
space-computation time trade-off, as described in [8] and shown
in [31]. Fig. 9 shows significant gains in memory storage demand
achieved by the proposed algorithm compared to the JT algorithm.
Fig. 10 shows that the new algorithm requires longer computation
times than the JT algorithm. We note, however, that as the system
become large, i.e., >n 20, the time to perform inference for both
algorithms increases exponentially with the system size. For the JT
algorithm, this is due to the increasing size of the cliques. For the
new algorithm, it is due to the computations needed for com-
pressing larger CPTs and intermediate factors λi during the vari-
able elimination process. As these increases are both exponential
in nature, it is estimated that the difference in computational ef-
ficiency between the two approaches will remain similar as the
number of components in the system increases, as is seen in the
trend of the computation time results for ≤ ≤n22 24 in Fig. 10.

It is important to note that the natures of the memory and time
constraints are fundamentally different. Memory storage is a hard
constraint. If the maximum size of the required memory exceeds
the storage capacity of a program or machine, no analysis can be
performed. While it is true that memory can be distributed, e.g., in
cloud storage, there still exists a hard limit on the maximum. In
contrast, computation time is more flexible. Indeed, various re-
courses are available to address the computational time, such as
parallel computing. In addition, there are several heuristics that
can be used to significantly enhance computational efficiency of
the proposed algorithms, including component ordering and use
of super-components. A future article will address these en-
hancements of the proposed algorithms.
6. Conclusions

Novel algorithms are presented that address the major system
size limitation issue in the use of BNs for modeling large systems.
These include a compression algorithm that significantly reduces
the required memory size to store the conditional probability
table (CPT) associated with the system node and the intermediate
factors required in the variable elimination method for inference
in the BN, and an algorithm that performs inference with com-
pressed matrices without decompressing or recompressing them.
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The latter enables the memory storage savings from the com-
pression algorithm to be preserved throughout the inference
process. Compared to a widely used existing algorithm, the new
algorithms are shown to achieve orders of magnitude savings in
memory storage requirement; however, this comes at the expense
of increased computation time. The proposed algorithms enable
the use of BNs to model and assess the reliability of large infra-
structure systems, which cannot be handled with existing
algorithms.
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