
  

  

Abstract— Gait analysis is important in diagnosing and 

evaluating certain neurological diseases such as Parkinson’s 

disease (PD). In this paper, we show the ability of our wireless 

inertial sensor system to characterize gait abnormalities in PD. 

We obtain physical features of pitch, roll, and yaw rotations of 

the foot during walking, use principal component analysis 

(PCA) to select features, and use the support vector machine 

(SVM) method to create a classification model. In the binary 

classification task of detecting the presence of PD by 

distinguishing between PD and control subjects, the model 

performs with over 93% sensitivity and specificity, and 97.7% 

precision. Using a cost-sensitive learner to reflect the different 

costs associated with misclassifying PD and control subjects, 

performance of 100% specificity and precision is achieved, 

while maintaining sensitivity of close to 89%. In the multi-class 

classification task of characterizing parkinsonian gait by 

distinguishing among PD with significant gait disturbance, PD 

with no significant gait disturbance, and control subjects, 

91.7% class recall for control subjects is achieved and the model 

performs with 84.6% precision for PD subjects with significant 

gait disturbance. The features selected for this classification 

task indicate the features of gait that are principal in 

discriminating gait abnormalities due to PD compared to a 

normal gait. These results demonstrate the ability of our 

wireless inertial sensor system to successfully detect the 

presence of PD based on physical features of gait and to identify 

the specific features that characterize parkinsonian gait. 

I. INTRODUCTION 

ARKINSON’S disease (PD) is a neurodegenerative disease 

in which patients often exhibit a disturbance of gait. Gait 

is usually evaluated subjectively by clinicians, and it may be 

difficult to distinguish between different disorders of gait. 

We are developing a system that utilizes wireless inertial 

sensors to perform quantitative gait analysis and assist 

clinicians in making an accurate diagnosis of PD based on 

physical features of the gait.  

II. BACKGROUND AND RELATED WORK 

The diagnosis of disease can be viewed as a classification 

task that sorts subjects into two classes: those with disease 

and those without it. Machine learning methods and, in 
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particular, support vector machines (SVMs) are a powerful 

tool for use in classification tasks, especially in high 

dimensions. In Parkinson’s disease (PD), SVM has been 

used to estimate the severity of tremor, bradykinesia, and 

dyskinesia [1]. Studies of gait in PD using SVMs have been 

limited to plantar pressure data [2] and ground reaction 

forces [3]. The equipment used for these studies only 

provides information related directly to the foot hitting the 

ground. For example, stride time can be obtained, but no 

information can be obtained regarding how the foot moves 

during a stride. This limits the understanding of the physical 

characteristics of gait that distinguish PD patients from 

healthy subjects. 

III. METHOD 

A. Experiments 

In this study, we use wireless inertial sensors attached to 

the foot to continuously monitor the motion of the foot 

during walking. The sensors used are assembled from the 

Micro-AHRS model of sensors manufactured by 

MicroStrain, Inc [4]. They are small and lightweight, 

measuring 41 mm x 63 mm x 32 mm and weighing 39 grams. 

The sensors include a 50-g triaxial accelerometer and 1200 

deg/s triaxial rate gyroscope, outputting raw 3D acceleration 

and angular rate data. This raw data is transformed into 3D 

displacements as previously described using the principal of 

“zero velocity updating” [5]. This technique assesses the 

sensor drift at the end of every step, i.e. when foot velocity is 

zero, and allows the removal of cumulative effects of drift 

over one step to obtain accurate integration results [6]. 

Data were collected from 23 subjects with a clinical 

diagnosis of PD attending the UCSF Parkinson’s Disease 

Clinic and Research Center in San Francisco, and from 16 

age-matched control subjects without history of neurological 

disease. Of the subjects diagnosed with PD, 11 had a 

clinically significant disturbance of gait, and 12 had no such 

disturbance. The wireless inertial sensors were attached to 

subjects’ feet using a foot mount as shown in Figure 1(a). 

Subjects then walked along a predetermined path along a 

hallway in the UCSF clinic. Data were transmitted over 

Bluetooth to a nearby handheld PDA and stored on the 

device for later processing. In total, collecting data from 

sensors on both feet in some cases, 21 PD with significant 

gait disturbance, 24 PD with no significant gait disturbance, 

and 24 control data points were obtained. 
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Figure 1(b) shows an example of the 3D displacement 

signal for a 10-second time segment during the course of an 

experiment for one subject. The pitch, roll, and yaw 

directions are as given in Figure 1(a). 
(a)            (b) 
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Figure 1: Orientation of axes on foot with sensor package attached using 

foot mount (a) and sample 3D displacement signal in pitch, roll, and yaw 

directions over a 10-second segment (b). 

B. Data Analysis 

The data analysis is performed for two separate 

classification tasks. The first is to detect the presence of PD, 

i.e. a binary classification task of distinguishing between PD 

and control. The second is to characterize parkinsonian gait, 

i.e. a multi-class problem of distinguishing among PD with 

significant gait disturbance, PD with no significant gait 

disturbance, and control. A similar data analysis algorithm is 

employed for both tasks. This algorithm involves multiple 

modules (Figure 2). Each analysis module is discussed in 

detail in their following subsections. 
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Figure 2: Flow chart of data analysis algorithm. 

1) Feature extraction: From the 3D displacement data 

signals for each subject, 67 features of physical relevance are 

extracted. These are time-domain features of 3D 

displacements, so values of features clearly correspond with 

physical behaviors. For example, range of motion in the 

pitch direction corresponds with maximum motion from 

plantar flexion to dorsiflexion of the foot during walking, 

while a maximum positive rotation of the foot in the pitch 

direction corresponds with the foot’s maximum angle of 

dorsiflexion reached during a step. 

2) Normalization of features: The values of each feature are 

in varying ranges. For example, the range of motion in the 

pitch direction spans from 18 degrees to 102 degrees 

whereas the maximum angle of dorsiflexion spans from 1 

degree to 33 degrees. In order to accurately compare the 

different features, the features are normalized. Figure 3 is a 

plot of two features extracted from the data: maximum range 

of motion in the pitch direction, and maximum angle of 

dorsiflexion reached during a step as averaged over all steps 

of the walk. Figures 3(a) and 3(b) show the normalized 

feature values for the binary and multi-class tasks, 

respectively. 
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Figure 3: Normalized values for two features extracted for the binary (a) 

and multi-class (b) tasks. 

3) Principal Component Analysis (PCA): The 67 features 

extracted from the data produce a 67-dimensional space. 

However, not all the features contribute equally to overall 

data variance. To reduce dimensionality while maximizing 

the data variance in the lower-dimensional space, principal 

component analysis (PCA) is used. The eigenvalue 

decomposition of the covariance matrix allows for each 

feature to be ranked in order of its contribution to overall 

data variance. 

4) Feature selection: Using the results of the PCA, 

features are selected for use in classification. Of the 67 

features, the first 11 principal components are selected for 

the first classification task of distinguishing between PD and 

control. These 11 features cumulatively account for 80.2% of 

the variance in the data. The subsequent contributions of 

additional features to the data variance are less than 2.3% per 

feature, decreasing to 0.0%. An additional four features are 

selected for the second classification task of characterizing 

parkinsonian gait for a total of 15 features. All selected 

features for both classification tasks are listed in Table I. 

These features include statistical variability as measured 

using standard deviation (SD). The (+) or (-) next to the 

feature names indicate whether PD patients exhibit higher or 

lower values for the features, respectively, relative to 

controls. These features allow us to see which components of 

gait are most significant in characterizing parkinsonian gait. 
TABLE I 

PHYSICAL FEATURES SELECTED BASED ON PCA FOR USE IN CLASSIFICATION 

MODEL, WITH PD SUBJECTS HAVING HIGHER (+) OR LOWER (-) VALUES FOR 

THE FEATURES RELATIVE TO CONTROLS 

Pitch features (deg) Roll features (deg) Yaw features (deg) 

Range of motion (-) Range of motion (-) Range of motion (-) 

Maximum angle of 

dorsiflexion (-) 

Maximum positive roll 

angle (-) 

Maximum positive yaw 

angle (-) 

Maximum angle of plantar 

flexion (-) 

Maximum negative roll 

angle (+) 

Maximum negative yaw 

angle (+) 

Plantar flexion SD (+)   

Single-step maximum of maximum angle of plantar flexion (-) 

Additional features utilized in characterizing parkinsonian gait 

Overall 3D SD (-) Single-step maximum of maximum negative roll angle (-) 

Maximum cadence (+) Single-step minimum of maximum negative roll angle (-) 

5) Classification using support vector machine (SVM): 

With the selected features, the support vector machine 

(SVM) method is then used for classification. SVM 

optimally separates classes by maximizing the margin 

between classes and minimizing the classification error. In 

Figure 3, there is clear overlap between the two classes of 

PD and control, and among the three classes of PD with 

significant gait disturbance, PD with no significant gait 
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disturbance, and control. The data are therefore linearly 

inseparable and a nonlinear kernel must be used in the SVM 

process. The nonlinear radial basis function (RBF) kernel is 

chosen, and this kernel function maps the data into a new 

space, where a k-dimensional hyperplane is used to separate 

the classes, and k is the number of features used in the 

model. Parameters for the kernel are also selected to 

optimize the tradeoff between maximizing the margin 

between classes and minimizing the misclassification costs. 

Figure 4 is an illustration of SVM in a 2D space. 

 
Figure 4: Illustration of SVM in a 2D space. 

Utilizing the LIBSVM package [7], the RBF kernel is 

used and a cost-sensitive SVM classification model is built 

for the binary classification task by solving the optimization 

problem of (1).  
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where , ,w b ξ  are optimization parameters; PDC  and 

ControlC  are the costs for misclassifying PD and control 

subjects, respectively; {1, 1}ny ∈ −  is the vector of labels, i.e. 

1 for PD and -1 for control, for PDn  and Controln  PD and 

control data points, respectively; and x  is the feature value 

for the data point to be classified. Points are classified based 

on the sign of Tw x b+ , i.e. on which side of the hyperplane 

the data point falls on. Thus, data points are classified 

according to (2). 
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In the case of equal misclassification costs, 

1PD ControlC C= = . In predicting the presence of PD, 

however, the cost of misclassifying a subject as PD or 

control may differ. A cost-sensitive learner is used to 

accommodate these varying misclassification costs. In a 

more conservative approach, one errs on the side of caution 

and classifies a subject as normal rather than PD in the face 

of uncertainty. This translates into a higher cost for 

misclassifying a control subject as PD compared to 

misclassifying a PD subject as control and PD ControlC C< . 

6) K-fold cross-validation with stratified sampling: 

Finally, K-fold cross-validation with stratified sampling is 

used to test the SVM classification model and estimate its 

predictive performance. K=10 was chosen for optimal model 

estimation from real-world data [8]. The data set is 

partitioned into 10 subsets using stratified sampling where 

the class distribution in each subset, i.e. proportion of PD to 

control data points, is the same as the distribution in the 

entire data set. In each of 10 iterations, one subset is retained 

as testing data for the model, and the remaining nine subsets 

are used to train the model. Performing multiple repetitions 

of the cross-validation process checks for overfitting of the 

model, where the model fits the training data very well, but 

performs poorly in predicting class labels for new data. 

Overall performance of the model is obtained by averaging 

the performance over the 10 rounds. 

IV. RESULTS 

A.  Detecting presence of PD: binary classification task 

For the two cases of equal misclassification costs for PD 

and control data points, and varying misclassification costs 

where the cost of misclassifying a control subject as PD is 

assigned a 50% higher cost compared to misclassifying a PD 

subject as control, the prediction performance is given in 

Table II. Sensitivity measures how well the prediction model 

recognizes PD cases. Specificity measures how well the 

model identifies control cases. The false positive rate 

measures how often controls are misclassified as PD. 

Precision, or positive predictive value, measures how well 

the prediction of PD reflects the underlying presence of 

disease. 
TABLE II 

PREDICTION PERFORMANCE METRICS FOR CASES OF EQUAL OR VARYING 

MISCLASSIFICATION COSTS 

 Equal costs Varying costs 

Sensitivity 93.3% 88.9% 

Specificity 95.8% 100.0% 

False positive rate 4.2% 0.0% 

Precision 97.7% 100.0% 

B. Characterizing parkinsonian gait: multi-class 

classification task 

Table III gives the prediction performance in the multi-

class problem of distinguishing among PD with significant 

gait disturbance, PD with no significant gait disturbance, and 

control. Because this classification task is no longer binary, 

the performance metrics of sensitivity and specificity do not 

apply. Precision is still applicable, and in this case, indicates 

the rate at which data points classified as a member of a 

certain class actually belong to that class. Recall is used to 

measure prediction performance by indicating the rate at 

which data points of a certain class can be correctly 

identified as members of that class. In this classification task, 

varying misclassification costs does not improve the 

performance of the classifier in any metric without a 

significant decrease in performance in other metrics. 
TABLE III 

PREDICTION PERFORMANCE FOR MULTI-CLASS CLASSIFICATION TASK 

 Class recall Class precision 

PD with gait disturbance 52.4% 84.6% 

PD with no gait disturbance 66.7% 64.0% 

Control 91.7% 71.0% 
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V. DISCUSSION 

From Figure 3, we can expect that it is difficult to separate 

the classes using only two features. Therefore, the SVM 

approach, using the RBF kernel, is useful for working in a 

higher-dimensional space where the values for the principal 

features are utilized to achieve the best nonlinear separation 

between the classes. 

The features selected for use in classification as shown in 

Table I all together describe the 3D motion of the foot 

through the air during walking. These principal features are 

not obtainable from alternative gait analysis methods or 

equipment such as looking at plantar pressure [2] or ground 

reaction forces [3]. 

An examination of the features utilized in the multi-class 

classification task to distinguish PD subjects with gait 

disturbance from the other two classes allows us to 

characterize parkinsonian gait. The gait abnormalities of PD 

are characterized by decreased range of motion in all three 

angular directions. PD gait is characterized by decreased 

dorsiflexion and plantar flexion, a tendency to roll the foot 

towards the inside during the swing phase of the step, and a 

decreased swing of the foot in the positive yaw direction. PD 

subjects with significant gait disturbances exhibit greater 

variability in plantar flexion, a result consistent with existing 

findings about increased gait variability in PD [9]. Lower 

variability overall found here may be due to decreased 

magnitude of all variables, and therefore decreased 

magnitude of overall SD. Finally, increased maximum 

cadence is consistent with previous studies that have found 

parkinsonian patients to exhibit increased cadence compared 

to controls [10]. 

Using the physical features selected in Table I, the model 

performs both binary and multi-class classification tasks. 

Table II summarizes the performance of our model in the 

binary classification task of separating PD and control. 

Looking at the equal costs column shows that the data 

analysis algorithm produces a prediction model of high 

sensitivity and specificity of over 93%, with a low false 

positive rate of under 5%, and high precision of 97.7%. This 

performance exceeds the results of previous studies by 

around 10% in all metrics [3]. 

Comparing the results for an equal misclassification costs 

model with a cost-sensitive model with varying costs shows 

that the method successfully accommodates differing costs 

for misclassification. The difference in costs is a parameter 

that can be adjusted by clinicians. A 50% higher cost for 

misclassifying a control subject as PD compared to 

misclassifying a PD as control performs at 100% specificity 

and precision, while maintaining sensitivity of 88.9%.  This 

performance exceeds the results of previous studies by close 

to 15% [2]. The chosen relative cost difference for 

misclassification is representative of a more conservative 

approach to diagnosis, where a clinician wants to be certain 

of the PD diagnoses that are made and avoid misdiagnoses of 

the presence of PD. 

From the prediction performance in the multi-class 

classification task as shown in Table III, the model performs 

best with respect to recall for control subjects. A class recall 

for the control group of 91.7% indicates that 91.7% of 

control subjects are correctly diagnosed not to have PD. 

Having a high class recall for controls is significant in a 

conservative diagnostic approach as described previously. 

The model performs best with respect to precision for PD 

subjects with gait disturbance. A precision of 84.6% 

indicates that for 84.6% of subjects identified as PD with 

gait disturbance, the prediction from the model accurately 

reflects the underlying condition of the subject. It should be 

noted that the remaining 15.4% of subjects incorrectly 

identified as PD with gait disturbance are not controls, but 

PD subjects that have not been clinically observed to have a 

gait disturbance. The current clinical determination of gait 

disturbance is subjective, so some variability with respect to 

gait disturbance or not in PD subjects is expected. 

VI. CONCLUSION 

 Our wireless inertial sensor system allows us to 

quantitatively measure differences between PD and healthy 

gait. This is an important step in creating a system to assist 

clinicians in diagnosing and evaluating patients using gait 

analysis, and in more fully understanding manifestations of 

neurological disease in disturbances of gait. 
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